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Abstract— Fault detection, isolation, and accommodation  strategies. Participants discussed topics such as model-based
(FDIA) systems play a critical role in ensuring the smooth control, multivariable control, and optimization while
operation of complex industrial processes with no faults. exchanging kn()wledge and experiences thr()ugh case studies
However, traditional model-based approaches face challenges in [1].
capturing and maintaining the complexity of modern systems.

This paper presents a data-driven alternative for FDI and fault- In oil refineries, heavy oil fractionators are essential
tolerant control (FTC) systems that overcome these limitations. ~ because they separate crude oil into distinct product draws by
This paper tackles the fault identification and detection in the  efficiently chilling the mixed-phase oil supply. It plays a
Shell heavy oil fractionator using two control approaches, the significant role in processing and separating hydrocarbons’
Model Predictive Control (MPC) and Proportional-Integral (PT) complex mixtures that in turn creates heavy oil. In industrial
controller. Two types of fault behaviors (drift and bias faults)  processes, there are several fractionators working together,
are applied to the validated model that was validated with  each specialized in fractionating products from different
historical data collected during normal process Operation. To draws’ that are ﬁ'equently observed in Operation_ However’
indicate potential faults in the measurement system, the this complex multi-input/multi-output (MIMO) system is
Squared Prediction Error (SPE) is calculated to observe the  yyperaple to measurement errors that can have a significant

possible faults. While introducing the two faults, the constructed impact with further procedures in the refining process. Thus
FDI unit showed successful detection of the fault using PCA. For keeping precise measurements is essential to guaran teeiné
identification, the fault is isolated and identified through SPE operational cffectiveness and averting possible losses

calculations, where the top endpoint y1 clearly showed a high th hout the refini

spike of 240 and 18 compared to the other outputs (for drift fault roughout the rehining process.

and bias fault, respectively). Finally, fault-tolerant control is Fig. 1 illustrates the Shell Heavy Oil Fractionator
constructed and applied to compensate for the fault behaviors presented by Prett and Morari in 1987 at the Shell process
introduced. The two FTC techniques used are measurement control workshop [1]. As shown in Fig. 1, there are seven
reconstruction and measurement replacement in both MPC and output variables (top end point y1, side end point y2, top
PI control algorithms. The two techniques showed great results temperature y3, upper reflux temperature y4, side draw
in compensating faults, where the fault compensation for bias temperature y5 ’ intermediate reflux ternperaturei y6, bottom
fault occurred at time 905 min after introducing the fault and reflux temperat,ure y7), three input variables (top dr’aw flow
around 25-30 minutes after introducing the fault measurement rate. ul- side draw ﬂO\;V rate. u2: bottom reflux head transfer
as drift fault. The results demonstrate the system's adaptability rate’ u 3j intermediate reflux l;eat’trans fer rate, 12; upper reflux

and versatility in real-world industrial settings. When combined . .
with PI and MPC controllers, the FDI system exhibits robust heat transfer rate, 11), and two measured disturbance variables

performance, providing valuable insights into its capabilities.  (intermediate reflux heat transfer rate, 12; upper reflux heat

By leveraging data-driven methodologies and assessing their transfer rate, 11). This process is mgdeled using a set qflinear
performance in a simulated environment, this paper paves the ~ models, first-order transfer functions, that can satisfy the

way for more effective FDI systems in complex industrial dynamic behavior of the fractionator shown in Table I. [2]
processes.

TABLE L SHELL HEAVY OIL FRACTIONATOR MODEL TRANSFER
Keywords— Fault Detection and Isolation (FDI), Fault FUNCTIONS
Tolerant Control (FTC), Model Predictive Control (MPC),
Principal Component Analysis (PCA), Squared Prediction Error Outputs
SPE), drift and bias faults, industrial process monitorin
¢ ), drift a f ’ p g Top Side Bottom Intermedi Upper
draw reflux ate reflux reflux
L. INTRODUCTION (:lr:v\:,v flow head heat heat
The Shell Control problem conducted by [1] in 1987 was rate rate, u2 t”‘t“Sfe; “at“Sflezr “"‘t‘“fl"lr
a pivotal event in the field of process control, aimed at . e u e, rate,
. . . . Heavy oil
addressing challen.ges. in the oil and gas industry. The probl.em fractionat | 4.05¢-275 1.77¢-285 5.88e-275 1.20e-275 | 1.44e-27
focused on bridging the gap between theoretical ortopend | 505+ 1| 60s+1| 50s+1| 455s+1 | 40s+1
advancements and practical implementation of control point, y1

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
32



Outputs
To Side Bottom Intermedi Upper
drap draw reflux ate reflux reflux
flo W flow head heat heat
rat‘: rate, u2 transfer transfer transfer
rate, u3 rate, 12 rate, 11
Heavy oil
(f)rra:it(li‘;nm 5.39¢7185 5.72¢ 1% 6.90e715 1.52¢715 | 1.83¢715S
end point 50s+1| 60s+1| 40s+1 255 +1 20s+1
y2
;‘r’gperam 3.66e725 | 1.65¢72% 553¢725 | 116705 | 1.27¢7%
re, y3 9s+1 30s+1| 40s+1 11s+1 6s+1
Upper
reflux 5.92e7 115 2547125 8.10e72°| 1.73e7°° 1.26e70
temperatu 12s+1| 27s+1| 20s+1 2s+1 22s+1
re, y4
Side draw —5s ~7s -2s —0s —0s
temperatu 4.13e 2.38e 6.23e 1.31e 1.26e
re, y5 8s+1 19s+1| 10s+1 195+ 1 22s+1
Intermedi
ate reflux | 4.06e72%| 4.18e™%°| 6.53e7'S| 1.19¢7% | 1.17e7°%°
temperatu 13s+1] 33s+1 9s+1 195+ 1 32s+1
re, y6
Bottom
reflux 4.38e72% 4.42e72%5 7.20e7% | 1.14e7% 1.26e70
temperatu 33s+1| 44s+1| 19s+1 27s +1 32s+1
re, y7
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Fig. 1. The Shell heavy oil fractionator. [2]
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A. Aim of the paper

The aim of this paper is to design a reliable FDI & FTC
system to detect and accommodate the shell heavy oil
fractionator faults, plus implement process control strategies
such as PID & MPC. First, it is crucial to design the control
loops that are the base of the control process for the plant. The
FDI unit was then constructed using the training data with and
without the fault tests. The FDI unit should also send out the
faulty value in a different route (i.e., to the supervisory unit)
for compensation to occur. Finally, to accommodate the faults
temporarily until the faulty instrument or part of the process is
addressed, the FTC or a supervisory unit is designed so that
when a fault is detected, the system manipulates this fault
temporarily.

B. Motivation

Fault diagnostics has been a crucial aspect of process plant
supervision for decades, and most recently it has been eye-
catching when combined with process accommodators or
compensators to optimize the process performance and
prevent process instability. The fault detection, isolation, and
accommodation system is generally an online system that
could be implemented in various industrial processes. The
Shell Heavy Oil Fractionator serves as a great example in
demonstrating a real-life industrial process that has various
factors that could eventually become faulty or fail in
operation. The system designed in this process detects the
fault using statistical analysis, isolates the faulty value, then
temporarily compensates it using optimization techniques.

II. LITERATURE REVIEW

A. Fault detection and isolation

In recent years, various industrial companies have tried
reducing operational costs and enhancing safety in complex
control systems, leading to increased research in the field of
fault detection and isolation (FDI). There are various methods
that have been proposed for FDI, which can be categorized
into two main groups: model-based and data-driven methods

(2], [3]. [4], [5], [6].

Model-based methods assume prior knowledge of the
mathematical model describing the system dynamics. Kalman
filtering is a well-known example of a model-based method
that has been used in various applications. However,
limitations of these methods, such as the difficulty in
accurately capturing the complexities of real-world systems
using first-principal equations. As the process becomes more
complex, obtaining an accurate system model for FDI
becomes much harder [7].

Data-based models provide an alternate solution for cases
when the model-based approach to fault detection and
isolation (FDI) becomes harder to obtain. Data-based models
rely on large archives of process data that are available in
many real-world applications, and these can be used to build
data-based models. These models are trained with input-
output data sets and are designed to handle non-linear systems.

(31041, [7].

Principal Component Analysis (PCA) is a prevalent
method in multivariate data analysis, where it converts
correlated variables into a reduced collection of uncorrelated
principal components. Principal Component Analysis (PCA)
is utilized across several domains and frequently serves as a
first phase in the examination of extensive datasets [5], [6],
[8]. The primary aim of PCA is:



e Derive the salient information from the data table.

e Reduce the data set's size by retaining only the
essential information.

o Simplify the characterization of the data set.

e Examine the composition of the observations and the
variables.

e Compress the data by decreasing the dimensionality
while preserving the majority of the information. This
approach is employed in picture compression.

To achieve these objectives, PCA computes new variables
termed principal components, which are linear combinations
of the original variables. To calculate the primary
components, the subsequent procedures may be employed.

e Standardize the data: This involves standardizing the
dataset by removing the mean and dividing by the
normal deviation for each variable.

e Calculate the covariance matrix: Compute the
covariance matrix of the normalized data. The
covariance matrix illustrates the interrelationships and
variances among various variables in the dataset.

e Determine the eigenvectors and eigenvalues: Calculate
the eigenvectors and eigenvalues of the covariance
matrix. The eigenvectors denote the main components,
whereas the eigenvalues indicate the variance
accounted for by each principal component.

e Sort the eigenvectors. Arrange the eigenvectors in
descending order according to their associated
eigenvalues. This stage aids in identifying the primary
components that account for the most variance in the
data.

e Select the preferred quantity of major components:
Ascertain the quantity of principal components to
preserve based on the proportion of variance
elucidated. In most applications, the primary
components are selected based on the substantial
proportion of overall variation accounted for; for
instance, the leading two components encompass up to
80% or 90% [5], [6].

After standardization

Actual Data

After normalizing

Fig. 3. Model for Data Standardization.
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Fig. 4. Chart depicting explained variance.

Interpreting PCA findings necessitates comprehending the
information encapsulated by the principal components and its
correlation to the original variables. Consequently, two
primary methodologies must be evaluated to have a deeper
understanding of the outcomes of the principal component
analysis. The first is to calculate the loadings that denote to the
correlations between the original variables and the main
components. Each major component possesses an associated
set of loadings that signify the magnitude and orientation of
the link between the variables and the component. It indicates
the extent to which each variable contributes to the primary
components.

The second step is to calculate the scores that denote to the
changed values of the original data projected onto the major
components. Every observation in the dataset is allocated a
score for each main component. These scores denote the
location of an observation inside the reduced-dimensional
space established by the principal components [9], [10], [11],
[12], [13].
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Fig. 5. Principal Component Analysis Loadings.



Scores Plot

Fig. 6. Plot of PCA Scores.

B. Fault detection and isolation

Industrial processes are intrinsically susceptible to
failures, mostly stemming from sensors, actuators, the process
itself, or the controller. The controller's control action may
substantially decline due to the fault, even if the system
operates correctly, resulting in a situation where the fault
escalates to the extent that the control loop cannot achieve
stability, leading to undesirable outputs or, in the worst-case
scenario, catastrophic system failure [6].

Due to the public's need for the uninterrupted operation of
automated systems and their apprehensions regarding possible
system breakdowns, guaranteeing the dependability of these
systems is essential. A technique to do this is by the
application of fault-tolerant control (FTC). FTC is a discipline
within control engineering that amalgamates many disciplines
of knowledge to improve system dependability. The principal
aim of FTC is to avert small faults from amplifying and
culminating in complete system failure. By enacting this
policy, the FTC reduces the likelihood of production
disruptions or safety risks stemming from system failures [2],

[3].

A variety of approaches are available for the application
of FTC in automated systems, including the following [2], [3]:

e Fault accommodation techniques aim to modify the
system's control strategy or settings in response to
detected issues. This may involve adjusting setpoints,
restructuring control loops, or using adaptive control
algorithms. The aim is to alter the system's behavior to
reduce failures and maintain optimal performance.

e Reconfiguration involves modifying the system's
design or structure in response to problems. This may
entail shifting to supplementary components, rerouting
signals, or modifying the system's operational mode.
Reconfiguration solutions aim to maintain system
functionality in the event of faults.

e The execution of redundancy involves the replication
of critical components or subsystems inside the
system. Redundancy enables a backup component or
subsystem to take over in the case of a breakdown,
ensuring continuous operation. Redundancy can be
achieved at several levels, encompassing sensor
redundancy and actuator redundancy. [5]
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III. METHODOLOGY AND SYSTEM DESIGN

The objective of controlling the fractionator is to maintain
the desired values for the endpoints of the top-draw product
(y1), side-draw product (y2), and bottom reflux temperature
(y7). This is achieved by manipulating the flow rates of the
top draw (ul), side draw (u2), and the heat transfer rate of the
bottom reflux (u3). The heat transfer rate (u3) is further
adjusted using a control loop that utilizes the hot steam flow
rate as a control variable. Additionally, there are two measured
disturbances in the system: the heat transfer rate of the upper
reflux (11) and the intermediate reflux (12). These flows
remove heat from the system and are subsequently reboiled in
other sections of the plant.

The study first determines the most suitable control
configuration for the PI (Proportional-Integral) controlled
system. To achieve this, the relative gain array (RGA) was
calculated, as shown in Table II, a method to analyze the
interaction between control variables and process outputs.
Based on the RGA matrix presented in Table II, the analysis
recommends pairing the top draw product endpoint (y1) with
the top draw product flow rate (ul) for control. Similarly, the
side draw product endpoint (y2) should be controlled by the
side draw product flow rate (u2), and the bottom reflux
temperature (y7) by the bottom reflux heat transfer rate (u3).

A. Control Using PI

With the control structure defined based on the RGA
analysis, the research moves to testing the control strategy.
This is done within a MATLAB Simulink environment. Three
separate PI controllers are added to the system, each dedicated
to controlling one of the key process variables: y1 (top draw
product endpoint), y2 (side draw product endpoint), and y7
(bottom reflux temperature). The tuning of the PI controllers
utilizes the Internal Model Control (IMC) method. This
approach helps determine the ideal settings for the PI
controllers. The final values obtained through IMC tuning are
presented in Table II1.

TABLE II. RGA MATRIX FOR THE PROCESS
Values
RGA Matrix Top draw Side draw Bottom reflux
te, ul flowrate, u2 head transfer
Slowrate, ’ rate, u3

Top endpoint, y1 2.0757 -0.7289 -0.3468
Side endpoint, y2 3.4242 0.9343 -3.3585
Bottom  reflux |y 499 0.7946 4.7503
temperature, y7




TABLE III. PI TUNING PARAMETERS
PI Parameters K values Ti
Controller 1 0.4 72
Controller 2 0.8 89
Controller 3 1.8 22

B. Control Using MPC

The MPC-based control strategy is subsequently
developed in the MATLAB platform. Real-time optimization
of a cost function is conducted using quadratic programming
to solve the constrained optimization problem, while
analytical approaches are employed for the unconstrained
scenarios. As certain process states cannot be directly
measured, a state estimator is necessary for the controller. For
this study, the default state estimation method employed by
the MPC toolbox is the Kalman filter.

The MPC parameters are adjusted based on the dynamics
of the simulated process. The prediction horizon (p) is set to a
duration that allows for an effective response to most
situations encountered in the simulated process. Given the
varying dead times (ranging from 0 to 28 minutes) and time
constants (ranging from 6 to 60 minutes) in the process, the
prediction horizon is established as 120 minutes. Similarly,
the control horizon (m) is set to a longer duration. However,
to account for computational time, the control horizon length
is defined as 40 minutes. The sample time for both the process
and the MPC is configured as 1 minute.

The weights assigned to the controlled variables and
manipulated variables (MVs) are adjusted to fine-tune the
performance and behavior of the MPC. The controlled
variables y1, y2, and y7 are assigned weights of 45. The MV
weights are set to 0.01. To mitigate the impact of noise and
abrupt changes in output values, the weights assigned to the
MYV rates (ul, u2, and u3) are established as 1000. These
weight value configurations result in more stable and reliable
control actions compared to lower weight values. A summary
of the MPC parameter values is provided in Table IV.

C. Designing FDI and FTC

In fault detection and isolation (FDI) systems, Principal
Component Analysis (PCA) helps identify process issues. By
analyzing historical data under normal conditions, PCA builds
a model of expected behavior. During operation, new data is
compared to this model. Deviations exceeding a threshold,
calculated using squared prediction error, signal potential
faults. PCA can even assist in fault location by analyzing
which variables contribute most to the deviation [14].

TABLEIV. MPC PARAMETERS
Parameter Values
Prediction Horizon, p 120
Control Horizon, m 40
Weights, CV [yl y2y7 ] [454545]
Weights, MV [0.010.01 0.01]
Weights, MV rates [ 1000 1000 1000 ]
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To determine whether the data significantly differs from
normal operating data, the T?> method 1is used as expressed in

(1).

T2

$ (1)

2_\a
T - _i:l

If the calculated value exceeds the threshold, it suggests a
potential fault.

D. Squared Prediction Error (SPE)

The Squared Prediction Error (SPE) defines the error by
comparing the actual values of data with its reconstruction of
the reduced data by PCA as expressed in (2).

SPE= Jril( Xj' )(reconstructf::d,j)2 (2)
SPE Contribution helps isolate which specific features are
responsible for the error and to calculate this using (3):

SPE Contribution=( X;- Xyeconstructed) (1)

SPE Contribution Analysis helps identify the cause of a
fault by breaking the total Squared Prediction Error (SPE) into
parts contributed by each feature. It compares the real value of
a feature to its predicted (reconstructed) value. The feature
with the largest difference is flagged as the main contributor
to the fault. This method makes it easier to pinpoint which
specific variable in the data is behaving abnormally, allowing
precise fault isolation.

E. Thresholds

The thresholds for T-squared and Squared Prediction Error
(SPE) statistics are critical for fault detection in multivariate
analysis. These thresholds are set to determine when the
process deviates significantly from normal behavior,
indicating a potential fault. The T-squared threshold is
determined based on the confidence level, the number of
principal components, and the number of samples in the
dataset. This threshold establishes the critical limit for the T-
squared statistic, beyond which the data is considered
abnormal. Similarly, the Squared Prediction Error threshold is
calculated using the confidence level and the number of
variables in the dataset, setting the limit for the reconstruction
error. These thresholds depend on the specific characteristics
of the dataset, including the number of samples and variables,
and can be adjusted based on the desired sensitivity of the fault
detection system. A higher confidence level results in a stricter
threshold, making the system more sensitive to smaller
deviations. In contrast, a lower confidence level leads to a less
sensitive system, detecting fewer faults. By adjusting these
thresholds, the fault detection system can be tailored to the
unique requirements of the monitored process.

When the system calculates the Squared Prediction Error
(SPE) and Hotelling's T statistic for each PCA model, it
compares these values to pre-defined limits. If an SPE value
surpasses its corresponding limit, a fault is flagged on the
associated variable (y1, y2, or y7) with the highest exceeding
SPE. It's important to note that Hotelling's T? statistic acts
more as a confirmation and comparison tool, not the primary
trigger for declaring a fault.

Oil refineries experience two main types of sensor and
analyzer faults: abrupt changes (bias faults) and gradual shifts



(drift faults). Contamination in the analyzer sample usually
causes bias faults. Drift faults, on the other hand, can arise
from a slow buildup of materials within sensors, analyzers, or
sample lines.

The test data includes 1600 minutes of simulated process
data with these measurement faults incorporated. The
simulation injects a positive bias fault of 0.5 into the top
product quality variable (y1) at the 900-minute mark, lasting
until the 1100-minute mark. Another fault, a positive drift
fault, is also introduced into y1 at the 900-minute mark. This
drift fault gradually increases to a maximum value of 0.5 by
the 1100-minute mark. It's important to note that 0.5
represents the highest allowable limit for the final quality of
the top product (y1).

To train the PCA-based fault detection method, a dataset
of closed-loop process data without faults is used. This data
incorporates information about both external influences
(disturbance variables like upper and intermediate reflux heat
duty) and the system's response (controlled variables like
product end points and temperature). Additionally, it includes
details on the control inputs (manipulated variables like flow
rates and heat transfer) used to maintain the desired process
state. By learning the normal relationships between these
variables, the FDI method can identify deviations that might
signal a fault in the system.

The fault detection method employs three separate PCA
models, each focusing on a specific controlled variable (y1,
y2, or y7) along with its corresponding manipulated variables
(ul, u2, u3) and the disturbance variables (11, 12). This
structure (PCA1, PCA2, PCA7) allows the models to consider
the impact of external process disturbances while identifying
potential faults. To achieve this, the system calculates two
metrics for each model: Squared Prediction Error (SPE) and
Hotelling's T2 statistic, both with 95% confidence intervals.
These metrics help identify deviations from normal behavior
that might indicate a fault in the system.

Once a fault is successfully detected, located, and its
severity is determined in the top product quality variable (y1),
the system attempts to compensate for it. The study compares
two compensation methods: measurement reconstruction
using the PCA-based FDI system and measurement
replacement. Both methods are tested under two control
strategies: a traditional PI controller and a more advanced
model predictive control (MPC) strategy.

Regarding designing FTC, the FTC (Fault Tolerant
Control) is proposing a three-part system to address faults.
The system has a detection element (FDI), a control element,
and a supervisory element [12], [13], [15]. The supervisory
element takes action to minimize the impact of the fault, using
two possible methods: replacing faulty measurements or
reconstructing them. This study focuses on these two methods
for comparison with other control systems. Fig. 8 illustrates
both approaches.
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Measurement replacement is a strategy used in fault
tolerance control (FTC) systems to address situations where
sensor malfunctions provide unreliable data. This method
relies on a mathematical model of the system's behavior, built
using a technique called subspace identification (SID). The
training data for this model consists of system inputs and
corresponding correct measurements collected during normal
operation. When a sensor fault is detected, the supervisory unit
within the FTC system activates the model. This model,
essentially acting as a virtual sensor, generates an estimate to
replace the faulty measurement. The effectiveness of
measurement replacement hinges on the quality of the training
data used for SID. High-quality training data ensures the
model accurately reflects the system's behavior, allowing it to
provide reliable estimates and maintain control system
operation even in the presence of sensor faults.

Measurement reconstruction aims to salvage the faulty
measurement itself. It achieves this by calculating an iterative
correction value that minimizes the squared prediction error
(SPE). This correction value is derived using a PCA model
built from a separate training dataset. The supervisory unit
then applies this correction to the faulty measurement,
essentially attempting to "fix" it. Fig. 8 illustrates this
approach with a dashed line.

IV. RESULTS AND DISCUSSIONS

The experiment examined the system's reaction to a
setpoint alteration for the primary product quality (y1). At the
100-minute mark, the target end value (setpoint) of y1 was
elevated by 0.4 units. Fig. 9 illustrates that the PI controller
had a progressive response, ultimately attaining a steady
adjustment and meeting the new objective. Nevertheless, the
reaction was rather sluggish. The rising time for y1 to reach
0.4 was 400 minutes. The system required 600 minutes to
completely stabilize at the new setpoint value, signifying the
settling period. This alteration in the setpoint also influenced
other measured parameters inside the process, indicating
possible interconnections among various components of the
system.

Fig. 9.

Output of PID control.



The efficacy of the control system utilizing Model
Predictive Control (MPC) was assessed. Fig. 10 depicts the
reaction to a 0.4-unit step adjustment in the intended ultimate
quality (setpoint) of the top product (yl) at the 100-minute
interval. The MPC exhibited robust performance. It attained
the new setpoint of 0.4 for the highest product quality (y1) in
a markedly reduced duration relative to the PI controller
(achieved at 264 minutes). Moreover, as seen in Fig. 10, the
alteration of the setpoint for yl affected other measured
variables in the process. Nonetheless, these modifications
were seamless, and the other variables reverted to their
setpoints with reasonable rapidity, signifying effective overall
regulation by the MPC system. The rise time, defined as the
duration for yl to attain 90% of its new setpoint, is 200
minutes in this instance.

Fig. 10. Output of the Model Predictive Control (MPC).

A. Proportional-Integral Controller vs. Model Predictive
Controller

Although PI controllers have fulfilled their function,
optimally calibrated Model Predictive Control (MPC)
presents a more advantageous option, clearly outperforming
in both precision and reaction time (Fig. 9 & Fig. 10). MPC
attains the target setpoint markedly more rapidly, resulting in
expedited process modifications and possibly enhanced
results. MPC has additional advantages beyond speed: more
straightforward tuning methods than PI controllers, wider
application across various processes, and automated dead time
correction due to its integrated model. This paradigm
facilitates intrinsic multivariable control, essential for intricate
processes with interrelated variables. Moreover, MPC can
accommodate measurable disruptions, self-regulating to
sustain optimal performance. Nonetheless, the precision of the
MPC's internal model is crucial; a more precise model results
in enhanced overall system performance, as imperfections
might constrain the MPC's full capabilities.

B. Foreign Direct Investment Unit OQutcomes

The Fault Analyzer Toolbox in MATLAB Simulink was
employed to replicate authentic operating circumstances and
evaluate the system's resilience. This toolkit serves as an
effective instrument for introducing controlled defects into the
system. Two prevalent fault types had been identified: bias
and drift. Bias faults denote a persistent deviation in the
measured value, resembling scenarios such as sensor
calibration discrepancies. Drift faults, conversely, represent a
steady alteration in the observed value over time, maybe
resulting from sensor deterioration or environmental
influences. These controlled failures are included, as shown in
Fig. 11 and Fig. 12, to assess the system's capacity to detect,
isolate, and potentially correct for interruptions, therefore
assuring seamless functioning under non-ideal situations.
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Fig. 12. PID Fault Output (Bias Fault)

C. T? and SPE Outcomes

The research delineates a failure detection and isolation
(FDI) system grounded in Principal Component Analysis
(PCA). This approach uses two primary metrics: the Squared
Prediction Error (SPE) and Hotelling's T? statistic. The SPE
functions as the principal instrument for detecting anomalies
in the controlled variables. When an SPE value is over a
certain threshold, a defect is issued. An iterative procedure
utilizing SPE data is employed to identify the precise fault
type. The Hotelling's T? index serves as a supplementary
verification instrument.

The evaluation of bias and drift faults demonstrated the
efficacy of the PCA-based Fault Detection and Isolation
system. Both SPE and Hotelling's T? identified the bias
problem at the 905-minute mark, indicating a little delay
relative to the actual introduction of the fault. SPE detected
the issue at 925 minutes for both PI and MPC control
techniques in the context of the drift fault. Hotelling's T2,
however, exhibited a delay, identifying the defect just at 929
minutes. These data illustrate the markedly superior detection
rate of SPE relative to Hotelling's T2, despite equivalent
confidence levels. Fig. 13 and Fig. 14 display the SPE and
Hotelling's T? indices for drift and bias faults, respectively.

Ultimately, the algorithm isolates the defect by
pinpointing the variable with the largest SPE value that
surpasses the detection threshold. When many variables
exhibit SPEs over the threshold, the variable with the highest
value is designated as defective. The graphic illustrates that
the variable yl possesses the greatest SPE wvalue. This
identifies yl as the defective variable, facilitating focused
troubleshooting and maintenance activities.



Fig. 14. Output of FDI SPE and T? hoteling for bias defect.

D. FTC Unit Outcomes

Following the examination of fault detection and isolation
in both fault behaviors (bias fault and drift fault), the
subsequent phase is the fault compensation procedure to
achieve the fault-tolerant control (FTC) of the system [2], [3],
[16], [17]. The methods employed for fault compensation
include measurement reconstruction and measurement
replacement. Measurement reconstruction is fundamentally a
technique aimed at deriving the optimum value by optimizing
the SPE value at a given moment. Measurement replacement
adopts an alternative methodology, depending on the process
model to substitute the erroneous value with the ideal one.
Both measurement reconstruction and measurement
replacement eliminate the impact of faults and deliver a more
precise measurement for control reasons, as well as to mitigate
the problem until the defective process unit is rectified [2],
[16].

E. Reconstruction of Measurements with Bias Fault

The system effectively identified the bias fault
simultaneously (905 minutes) for both Proportional-Integral
(PT) and Model Predictive Control (MPC) techniques. Fault
correction was promptly attained with minimal interference to
other measures, illustrating the system's efficacy in managing
bias faults. Fig. 15 and Fig. 16 illustrate the measurement
reconstruction in a bias fault PCA-FDI unit [12], [15].

F. Reconstruction of Measurements using Drift Fault

Additionally examined the system's reaction to drift faults
(progressively altering defects). The system required a little
longer duration to identify and rectify the error in comparison
to bias faults. In both PI and MPC instances, the issue was
detected and rectified within an acceptable timeframe of
around 25-30 minutes following its impact on measurements.
This underscores the system's capacity to manage various
error types while preserving process stability. Fig. 17 and Fig.
18 illustrate the measurement reconstruction within a drift
fault.
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Fig. 15. Reconstruction of measurements for model predictive control with
fault-tolerant control in the presence of bias faults.

Fig. 16. Reconstruction of measurements for proportional-integral fault-
tolerant control in response to bias faults.

Fig. 17. Reconstruction of measurements for model predictive control with
fault-tolerant control addressing drift faults.

Fig. 18. Reconstruction of measurements for proportional-integral-based
fault-tolerant control addressing drift faults.

G. Measurement Substitution with Bias Error

The system efficiently addressed bias errors throughout
the measurement replacement process, swiftly attaining fault
compensation while reducing disruptions to other
measurements. The system's capability in addressing bias
errors is evidenced by the swiftness of fault rectification. The
substitution of measurements in a bias fault PCA-FDI unit is
depicted in Fig. 19 and Fig. 20.



H. Substitution of Measurement Due to Drift Fault

The system affected by the drift faults was analyzed. In
this instance, the system required longer time to identify and
rectify the issue in comparison to bias faults. In both PI and
MPC cases, the fault was detected and rectified, taking 25 to
30 minutes after introducing the faults in measurements. This
illustrates the system's capacity to handle diverse fault types
while maintaining process stability. Fig. 21 and Fig. 22 depict
the measurement substitution in a drift fault PCA-FDI unit.

The experiments validated the efficacy of the PCA-based
FDI utilizing measurement reconstruction and replacement for
fault compensation in the process. The system effectively
identified and rectified both bias and drift problems with
negligible effect on other readings. Ultimately, the
examination of measurement reconstruction and replacement
impacts on both PI and MPC controllers reveals largely
comparable outcomes, with minor discrepancies in the MPC
controller attributed to its more aggressive actions relative to
the PI controller, resulting in slight variations in efficiency
regarding measurement reconstruction or replacement.

Further analysis has been made to make sure that the
system could operate in various circumstances. This extended
analysis is made by incorporating the process disturbances
into the system prior to the FDI and FTC analysis. Fig. 23
shows the process output with PI control after incorporating
the process disturbances I1 and 12 into the three outputs yl1,
y2, and y7.

As Fig. 23 shows, the process is successfully stable;
however, the process outputs/inputs have exceeded the
process constraints, which indicates that the system in reality
is undesirable. Since MATLAB does not count process
constraints unless they are implemented, the process stabilizes
without process constraints under consideration.

For the FDI unit, the new system’s training data is changed
since the process output changed, and doing so, Fig. 24 shows
that the faults are very much like the faults in the previous
original analysis from the 900" min to the 1100® min.

Fig. 19. Measurement substitution for model predictive control with fault-
tolerant control addressing bias faults.
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Fig. 20. Substitution of measurement for proportional-integral-based fault-
tolerant control in the context of bias faults.

Fig. 21. Measurement substitution for model predictive control with fault-
tolerant control addressing drift faults.

Fig. 22. Measurement substitution for proportional-integral-based fault-
tolerant control addressing drift faults.

Fig. 23. PI output with disturbance.



Fig. 24. PI output with disturbance after drift fault.

Fig. 25 shows the SPE and T? charts, where it has been
observed that the results are also very similar to the original
analysis.

Fig. 25. SPE and T? charts for PI fault with disturbance.

Finally, the FTC unit is implemented with measurement
replacement and measurement reconstruction, where it is
observed that the results replicate the original analysis, as in
Fig. 26 and Fig. 27.

The FDI and FTC units designed in this paper give similar
results even if there are disturbances, and that will happen if
the training data injected into the system takes into account
everything the system could encounter other than faults (i.e.,
if the training data does not consider disturbances and the
implemented disturbances, the FDI and FTC unit will consider
it as faults).

Fig. 26. Measurement reconstruction for PI with disturbance-based FTC
unit.

Fig. 27. Measurement replacement for PI with disturbance-based FTC unit.
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V. CONCLUSIONS

This study investigates a data-driven methodology for
issue detection and tolerance in a simulated heavy oil
fractionation process (Shell Control issue). The methodology
uses Principal Component Analysis (PCA) to analyze sensor
data and identify abnormalities that may indicate problems.
Two fault-tolerant control systems were developed, utilizing
PCA-based fault detection and isolation. These systems
employed two fault compensation strategies: measurement
reconstruction and substitution. The effectiveness of these
systems and different control methods (MPC compared to PI
controllers) was then evaluated. The results demonstrate the
effectiveness of the proposed approaches. Both measurement
reconstruction and replacement significantly alleviated bias
and drift issues in the simulated readings. PCA employing
Squared Prediction Error (SPE) showed effectiveness in
defect detection, whereas Hotelling's T? served as a
comparable instrument. The FTC systems demonstrated
effective performance with both MPC and PI controllers,
showcasing their ability to detect and correct problems
regardless of the control mechanism used. The research
suggests that MPC offers greater flexibility in variable
management, making it potentially more suitable for complex
systems. The research presents a feasible data-driven
approach for attaining fault tolerance in industrial processes.

This study demonstrates the effectiveness of the PCA-
based FTC system in mitigating bias and drift faults;
nonetheless, its future success relies on enhanced resilience.
This necessitates an analysis of the system's response to a
wider range of perturbations, including modifications to the
process equipment, malfunctions in control actuators,
significant deviations from the initial process model, and the
ability to differentiate between sensor failures and external
disturbances impacting the process. Implementing a self-
tuning method for the controller would represent a substantial
advancement. This may entail online adaptation algorithms
that modify controller settings in response to identified
defects, allowing the system to sustain optimal process
performance under unexpected conditions.
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