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Abstract—	 Fault detection, isolation, and accommodation 
(FDIA) systems play a critical role in ensuring the smooth 
operation of complex industrial processes with no faults. 
However, traditional model-based approaches face challenges in 
capturing and maintaining the complexity of modern systems. 
This paper presents a data-driven alternative for FDI and fault-
tolerant control (FTC) systems that overcome these limitations. 
This paper tackles the fault identification and detection in the 
Shell heavy oil fractionator using two control approaches, the 
Model Predictive Control (MPC) and Proportional-Integral (PI) 
controller. Two types of fault behaviors (drift and bias faults) 
are applied to the validated model that was validated with 
historical data collected during normal process operation. To 
indicate potential faults in the measurement system, the 
Squared Prediction Error (SPE) is calculated to observe the 
possible faults. While introducing the two faults, the constructed 
FDI unit showed successful detection of the fault using PCA. For 
identification, the fault is isolated and identified through SPE 
calculations, where the top endpoint y1 clearly showed a high 
spike of 240 and 18 compared to the other outputs (for drift fault 
and bias fault, respectively). Finally, fault-tolerant control is 
constructed and applied to compensate for the fault behaviors 
introduced. The two FTC techniques used are measurement 
reconstruction and measurement replacement in both MPC and 
PI control algorithms. The two techniques showed great results 
in compensating faults, where the fault compensation for bias 
fault occurred at time 905 min after introducing the fault and 
around 25-30 minutes after introducing the fault measurement 
as drift fault. The results demonstrate the system's adaptability 
and versatility in real-world industrial settings. When combined 
with PI and MPC controllers, the FDI system exhibits robust 
performance, providing valuable insights into its capabilities. 
By leveraging data-driven methodologies and assessing their 
performance in a simulated environment, this paper paves the 
way for more effective FDI systems in complex industrial 
processes.  
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Tolerant Control (FTC), Model Predictive Control (MPC), 
Principal Component Analysis (PCA), Squared Prediction Error 
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I. INTRODUCTION

The Shell Control problem conducted by [1] in 1987 was 
a pivotal event in the field of process control, aimed at 
addressing challenges in the oil and gas industry. The problem 
focused on bridging the gap between theoretical 
advancements and practical implementation of control 

strategies. Participants discussed topics such as model-based 
control, multivariable control, and optimization while 
exchanging knowledge and experiences through case studies 
[1]. 

In oil refineries, heavy oil fractionators are essential 
because they separate crude oil into distinct product draws by 
efficiently chilling the mixed-phase oil supply. It plays a 
significant role in processing and separating hydrocarbons’ 
complex mixtures that in turn creates heavy oil. In industrial 
processes, there are several fractionators working together, 
each specialized in fractionating products from different 
draws, that are frequently observed in operation. However, 
this complex multi-input/multi-output (MIMO) system is 
vulnerable to measurement errors that can have a significant 
impact with further procedures in the refining process. Thus, 
keeping precise measurements is essential to guaranteeing 
operational effectiveness and averting possible losses 
throughout the refining process.  

Fig. 1 illustrates the Shell Heavy Oil Fractionator 
presented by Prett and Morari in 1987 at the Shell process 
control workshop [1]. As shown in Fig. 1, there are seven 
output variables (top end point y1, side end point y2, top 
temperature y3, upper reflux temperature y4, side draw 
temperature y5, intermediate reflux temperature y6, bottom 
reflux temperature y7), three input variables (top draw flow 
rate, u1; side draw flow rate, u2; bottom reflux head transfer 
rate, u3; intermediate reflux heat transfer rate, l2; upper reflux 
heat transfer rate, l1), and two measured disturbance variables 
(intermediate reflux heat transfer rate, l2; upper reflux heat 
transfer rate, l1). This process is modeled using a set of linear 
models, first-order transfer functions, that can satisfy the 
dynamic behavior of the fractionator shown in Table I. [2]  

TABLE I. SHELL HEAVY OIL FRACTIONATOR MODEL TRANSFER 
FUNCTIONS 

Outputs 

Top 
draw 
flow 
rate 

Side 
draw 
flow 

rate, u2 

Bottom 
reflux 
head 

transfer 
rate, u3 

Intermedi
ate reflux 

heat 
transfer 
rate, l2 

Upper 
reflux 
heat 

transfer 
rate, l1 

Heavy oil 
fractionat
or top end 
point, y1 

4.05%!"#$
50& + 1

1.77%!"%$
60& + 1

5.88%!"#$
50& + 1

1.20%!"#$
45& + 1

1.44%!"#$
40& + 1
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 Outputs 

 
Top 

draw 
flow 
rate 

Side 
draw 
flow 

rate, u2 

Bottom 
reflux 
head 

transfer 
rate, u3 

Intermedi
ate reflux 

heat 
transfer 
rate, l2 

Upper 
reflux 
heat 

transfer 
rate, l1 

Heavy oil 
fractionat
or side 
end point, 
y2  

5.39%!&%$
50& + 1  

5.72%!&'$
60& + 1  

6.90%!&($
40& + 1  

1.52%!&($
25& + 1  

1.83%!&($
20& + 1  

Top 
temperatu
re, y3  

3.66%!"$
9& + 1  

1.65%!")$
30& + 1  

5.53%!"$
40& + 1  

1.16%!)$
11& + 1  

1.27%!)$
6& + 1  

Upper 
reflux 
temperatu
re, y4 

5.92%!&&$
12& + 1  

2.54%!&"$
27& + 1  

8.10%!"$
20& + 1  

1.73%!)$
2& + 1  

1.26%!)$
22& + 1  

Side draw 
temperatu
re, y5 

4.13%!($
8& + 1  

2.38%!#$
19& + 1  

6.23%!"$
10& + 1  

1.31%!)$
19& + 1  

1.26%!)$
22& + 1  

Intermedi
ate reflux 
temperatu
re, y6 

4.06%!")$
13& + 1  

4.18%!'$
33& + 1  

6.53%!&$
9& + 1  

1.19%!)$
19& + 1  

1.17%!)$
32& + 1  

Bottom 
reflux 
temperatu
re, y7 

4.38%!")$
33& + 1  

4.42%!""$
44& + 1  

7.20%!)$
19& + 1  

1.14%!)$
27& + 1  

1.26%!)$
32& + 1  

 

  
Fig. 1. The Shell heavy oil fractionator. [2] 

 
Fig. 2. Model-based FDI vs. Data-based FDI. 

A. Aim of the paper 
The aim of this paper is to design a reliable FDI & FTC 

system to detect and accommodate the shell heavy oil 
fractionator faults, plus implement process control strategies 
such as PID & MPC. First, it is crucial to design the control 
loops that are the base of the control process for the plant. The 
FDI unit was then constructed using the training data with and 
without the fault tests. The FDI unit should also send out the 
faulty value in a different route (i.e., to the supervisory unit) 
for compensation to occur. Finally, to accommodate the faults 
temporarily until the faulty instrument or part of the process is 
addressed, the FTC or a supervisory unit is designed so that 
when a fault is detected, the system manipulates this fault 
temporarily. 

B. Motivation 
Fault diagnostics has been a crucial aspect of process plant 

supervision for decades, and most recently it has been eye-
catching when combined with process accommodators or 
compensators to optimize the process performance and 
prevent process instability. The fault detection, isolation, and 
accommodation system is generally an online system that 
could be implemented in various industrial processes. The 
Shell Heavy Oil Fractionator serves as a great example in 
demonstrating a real-life industrial process that has various 
factors that could eventually become faulty or fail in 
operation. The system designed in this process detects the 
fault using statistical analysis, isolates the faulty value, then 
temporarily compensates it using optimization techniques. 

II. LITERATURE REVIEW 

A. Fault detection and isolation 
In recent years, various industrial companies have tried 

reducing operational costs and enhancing safety in complex 
control systems, leading to increased research in the field of 
fault detection and isolation (FDI). There are various methods 
that have been proposed for FDI, which can be categorized 
into two main groups: model-based and data-driven methods 
[2], [3], [4], [5], [6].  

Model-based methods assume prior knowledge of the 
mathematical model describing the system dynamics. Kalman 
filtering is a well-known example of a model-based method 
that has been used in various applications. However, 
limitations of these methods, such as the difficulty in 
accurately capturing the complexities of real-world systems 
using first-principal equations. As the process becomes more 
complex, obtaining an accurate system model for FDI 
becomes much harder [7].  

Data-based models provide an alternate solution for cases 
when the model-based approach to fault detection and 
isolation (FDI) becomes harder to obtain. Data-based models 
rely on large archives of process data that are available in 
many real-world applications, and these can be used to build 
data-based models. These models are trained with input-
output data sets and are designed to handle non-linear systems. 
[3][4], [7]. 

Principal Component Analysis (PCA) is a prevalent 
method in multivariate data analysis, where it converts 
correlated variables into a reduced collection of uncorrelated 
principal components. Principal Component Analysis (PCA) 
is utilized across several domains and frequently serves as a 
first phase in the examination of extensive datasets [5], [6], 
[8]. The primary aim of PCA is:  
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• Derive the salient information from the data table.  

• Reduce the data set's size by retaining only the 
essential information.  

• Simplify the characterization of the data set.  

• Examine the composition of the observations and the 
variables.  

• Compress the data by decreasing the dimensionality 
while preserving the majority of the information. This 
approach is employed in picture compression.  

To achieve these objectives, PCA computes new variables 
termed principal components, which are linear combinations 
of the original variables. To calculate the primary 
components, the subsequent procedures may be employed.  

• Standardize the data: This involves standardizing the 
dataset by removing the mean and dividing by the 
normal deviation for each variable.  

• Calculate the covariance matrix: Compute the 
covariance matrix of the normalized data. The 
covariance matrix illustrates the interrelationships and 
variances among various variables in the dataset.  

• Determine the eigenvectors and eigenvalues: Calculate 
the eigenvectors and eigenvalues of the covariance 
matrix. The eigenvectors denote the main components, 
whereas the eigenvalues indicate the variance 
accounted for by each principal component.  

• Sort the eigenvectors. Arrange the eigenvectors in 
descending order according to their associated 
eigenvalues. This stage aids in identifying the primary 
components that account for the most variance in the 
data.  

• Select the preferred quantity of major components: 
Ascertain the quantity of principal components to 
preserve based on the proportion of variance 
elucidated. In most applications, the primary 
components are selected based on the substantial 
proportion of overall variation accounted for; for 
instance, the leading two components encompass up to 
80% or 90% [5], [6]. 

 
Fig. 3. Model for Data Standardization.  

 

 
Fig. 4. Chart depicting explained variance.  

Interpreting PCA findings necessitates comprehending the 
information encapsulated by the principal components and its 
correlation to the original variables. Consequently, two 
primary methodologies must be evaluated to have a deeper 
understanding of the outcomes of the principal component 
analysis. The first is to calculate the loadings that denote to the 
correlations between the original variables and the main 
components. Each major component possesses an associated 
set of loadings that signify the magnitude and orientation of 
the link between the variables and the component. It indicates 
the extent to which each variable contributes to the primary 
components.  
The second step is to calculate the scores that denote to the 
changed values of the original data projected onto the major 
components. Every observation in the dataset is allocated a 
score for each main component. These scores denote the 
location of an observation inside the reduced-dimensional 
space established by the principal components [9], [10], [11], 
[12], [13]. 

 

 
Fig. 5. Principal Component Analysis Loadings.  
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Fig. 6. Plot of PCA Scores. 

B. Fault detection and isolation 
Industrial processes are intrinsically susceptible to 

failures, mostly stemming from sensors, actuators, the process 
itself, or the controller. The controller's control action may 
substantially decline due to the fault, even if the system 
operates correctly, resulting in a situation where the fault 
escalates to the extent that the control loop cannot achieve 
stability, leading to undesirable outputs or, in the worst-case 
scenario, catastrophic system failure [6].  

 Due to the public's need for the uninterrupted operation of 
automated systems and their apprehensions regarding possible 
system breakdowns, guaranteeing the dependability of these 
systems is essential. A technique to do this is by the 
application of fault-tolerant control (FTC). FTC is a discipline 
within control engineering that amalgamates many disciplines 
of knowledge to improve system dependability. The principal 
aim of FTC is to avert small faults from amplifying and 
culminating in complete system failure. By enacting this 
policy, the FTC reduces the likelihood of production 
disruptions or safety risks stemming from system failures [2], 
[3].  

 A variety of approaches are available for the application 
of FTC in automated systems, including the following [2], [3]:  

• Fault accommodation techniques aim to modify the 
system's control strategy or settings in response to 
detected issues. This may involve adjusting setpoints, 
restructuring control loops, or using adaptive control 
algorithms. The aim is to alter the system's behavior to 
reduce failures and maintain optimal performance.  

• Reconfiguration involves modifying the system's 
design or structure in response to problems. This may 
entail shifting to supplementary components, rerouting 
signals, or modifying the system's operational mode. 
Reconfiguration solutions aim to maintain system 
functionality in the event of faults.  

• The execution of redundancy involves the replication 
of critical components or subsystems inside the 
system. Redundancy enables a backup component or 
subsystem to take over in the case of a breakdown, 
ensuring continuous operation. Redundancy can be 
achieved at several levels, encompassing sensor 
redundancy and actuator redundancy. [5] 

 
Fig. 7. Reconfiguration-based FTC system [1].  

III. METHODOLOGY AND SYSTEM DESIGN 
The objective of controlling the fractionator is to maintain 

the desired values for the endpoints of the top-draw product 
(y1), side-draw product (y2), and bottom reflux temperature 
(y7). This is achieved by manipulating the flow rates of the 
top draw (u1), side draw (u2), and the heat transfer rate of the 
bottom reflux (u3). The heat transfer rate (u3) is further 
adjusted using a control loop that utilizes the hot steam flow 
rate as a control variable. Additionally, there are two measured 
disturbances in the system: the heat transfer rate of the upper 
reflux (l1) and the intermediate reflux (l2). These flows 
remove heat from the system and are subsequently reboiled in 
other sections of the plant.  

The study first determines the most suitable control 
configuration for the PI (Proportional-Integral) controlled 
system. To achieve this, the relative gain array (RGA) was 
calculated, as shown in Table II, a method to analyze the 
interaction between control variables and process outputs. 
Based on the RGA matrix presented in Table II, the analysis 
recommends pairing the top draw product endpoint (y1) with 
the top draw product flow rate (u1) for control. Similarly, the 
side draw product endpoint (y2) should be controlled by the 
side draw product flow rate (u2), and the bottom reflux 
temperature (y7) by the bottom reflux heat transfer rate (u3). 

A. Control Using PI  
With the control structure defined based on the RGA 

analysis, the research moves to testing the control strategy. 
This is done within a MATLAB Simulink environment. Three 
separate PI controllers are added to the system, each dedicated 
to controlling one of the key process variables: y1 (top draw 
product endpoint), y2 (side draw product endpoint), and y7 
(bottom reflux temperature). The tuning of the PI controllers 
utilizes the Internal Model Control (IMC) method. This 
approach helps determine the ideal settings for the PI 
controllers. The final values obtained through IMC tuning are 
presented in Table III.  

TABLE II.  RGA MATRIX FOR THE PROCESS 

RGA Matrix 
Values 

Top draw 
flowrate, u1 

Side draw 
flowrate, u2 

Bottom reflux 
head transfer 

rate, u3 

Top endpoint, y1 2.0757 -0.7289 -0.3468 

Side endpoint, y2 3.4242 0.9343 -3.3585 
Bottom reflux 
temperature, y7 -4.4999 0.7946 4.7503 
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TABLE III.  PI TUNING PARAMETERS 

PI Parameters K values ti 

Controller 1 0.4 72 

Controller 2 0.8 89 

Controller 3 1.8 22 

B. Control Using MPC  
The MPC-based control strategy is subsequently 

developed in the MATLAB platform. Real-time optimization 
of a cost function is conducted using quadratic programming 
to solve the constrained optimization problem, while 
analytical approaches are employed for the unconstrained 
scenarios. As certain process states cannot be directly 
measured, a state estimator is necessary for the controller. For 
this study, the default state estimation method employed by 
the MPC toolbox is the Kalman filter.  

The MPC parameters are adjusted based on the dynamics 
of the simulated process. The prediction horizon (p) is set to a 
duration that allows for an effective response to most 
situations encountered in the simulated process. Given the 
varying dead times (ranging from 0 to 28 minutes) and time 
constants (ranging from 6 to 60 minutes) in the process, the 
prediction horizon is established as 120 minutes. Similarly, 
the control horizon (m) is set to a longer duration. However, 
to account for computational time, the control horizon length 
is defined as 40 minutes. The sample time for both the process 
and the MPC is configured as 1 minute.  

The weights assigned to the controlled variables and 
manipulated variables (MVs) are adjusted to fine-tune the 
performance and behavior of the MPC. The controlled 
variables y1, y2, and y7 are assigned weights of 45. The MV 
weights are set to 0.01. To mitigate the impact of noise and 
abrupt changes in output values, the weights assigned to the 
MV rates (u1, u2, and u3) are established as 1000. These 
weight value configurations result in more stable and reliable 
control actions compared to lower weight values. A summary 
of the MPC parameter values is provided in Table IV. 

C. Designing FDI and FTC  
In fault detection and isolation (FDI) systems, Principal 

Component Analysis (PCA) helps identify process issues. By 
analyzing historical data under normal conditions, PCA builds 
a model of expected behavior. During operation, new data is 
compared to this model. Deviations exceeding a threshold, 
calculated using squared prediction error, signal potential 
faults. PCA can even assist in fault location by analyzing 
which variables contribute most to the deviation [14]. 

 

TABLE IV.  MPC PARAMETERS 

Parameter Values 

Prediction Horizon, p  120  

Control Horizon, m  40  

Weights, CV [ y1 y2 y7 ]  [ 45 45 45 ]  

Weights, MV  [ 0.01 0.01 0.01 ]  

Weights, MV rates  [ 1000 1000 1000 ]  

To determine whether the data significantly differs from 
normal operating data, the Τ2 method  is used as expressed in 
(1). 

 Τ2=∑ Τj
2

σj2
a
j=1   (1) 

If the calculated value exceeds the threshold, it suggests a 
potential fault.  

D. Squared Prediction Error (SPE) 
The Squared Prediction Error (SPE) defines the error by 

comparing the actual values of data with its reconstruction of 
the reduced data by PCA as expressed in (2). 

 SPE=∑ (  Xj- Xreconstructed,j)
2m

j=1  (2) 

SPE Contribution helps isolate which specific features are 
responsible for the error and to calculate this using (3): 

 SPE Contribution=(  Xj- Xreconstructed)
2 (1) 

SPE Contribution Analysis helps identify the cause of a 
fault by breaking the total Squared Prediction Error (SPE) into 
parts contributed by each feature. It compares the real value of 
a feature to its predicted (reconstructed) value. The feature 
with the largest difference is flagged as the main contributor 
to the fault. This method makes it easier to pinpoint which 
specific variable in the data is behaving abnormally, allowing 
precise fault isolation. 

E. Thresholds 
The thresholds for T-squared and Squared Prediction Error 

(SPE) statistics are critical for fault detection in multivariate 
analysis. These thresholds are set to determine when the 
process deviates significantly from normal behavior, 
indicating a potential fault. The T-squared threshold is 
determined based on the confidence level, the number of 
principal components, and the number of samples in the 
dataset. This threshold establishes the critical limit for the T-
squared statistic, beyond which the data is considered 
abnormal. Similarly, the Squared Prediction Error threshold is 
calculated using the confidence level and the number of 
variables in the dataset, setting the limit for the reconstruction 
error. These thresholds depend on the specific characteristics 
of the dataset, including the number of samples and variables, 
and can be adjusted based on the desired sensitivity of the fault 
detection system. A higher confidence level results in a stricter 
threshold, making the system more sensitive to smaller 
deviations. In contrast, a lower confidence level leads to a less 
sensitive system, detecting fewer faults. By adjusting these 
thresholds, the fault detection system can be tailored to the 
unique requirements of the monitored process. 

When the system calculates the Squared Prediction Error 
(SPE) and Hotelling's T2 statistic for each PCA model, it 
compares these values to pre-defined limits. If an SPE value 
surpasses its corresponding limit, a fault is flagged on the 
associated variable (y1, y2, or y7) with the highest exceeding 
SPE. It's important to note that Hotelling's T2 statistic acts 
more as a confirmation and comparison tool, not the primary 
trigger for declaring a fault.  

Oil refineries experience two main types of sensor and 
analyzer faults: abrupt changes (bias faults) and gradual shifts 
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(drift faults). Contamination in the analyzer sample usually 
causes bias faults. Drift faults, on the other hand, can arise 
from a slow buildup of materials within sensors, analyzers, or 
sample lines.  

The test data includes 1600 minutes of simulated process 
data with these measurement faults incorporated. The 
simulation injects a positive bias fault of 0.5 into the top 
product quality variable (y1) at the 900-minute mark, lasting 
until the 1100-minute mark. Another fault, a positive drift 
fault, is also introduced into y1 at the 900-minute mark. This 
drift fault gradually increases to a maximum value of 0.5 by 
the 1100-minute mark. It's important to note that 0.5 
represents the highest allowable limit for the final quality of 
the top product (y1).  

To train the PCA-based fault detection method, a dataset 
of closed-loop process data without faults is used. This data 
incorporates information about both external influences 
(disturbance variables like upper and intermediate reflux heat 
duty) and the system's response (controlled variables like 
product end points and temperature). Additionally, it includes 
details on the control inputs (manipulated variables like flow 
rates and heat transfer) used to maintain the desired process 
state. By learning the normal relationships between these 
variables, the FDI method can identify deviations that might 
signal a fault in the system.  

The fault detection method employs three separate PCA 
models, each focusing on a specific controlled variable (y1, 
y2, or y7) along with its corresponding manipulated variables 
(u1, u2, u3) and the disturbance variables (l1, l2). This 
structure (PCA1, PCA2, PCA7) allows the models to consider 
the impact of external process disturbances while identifying 
potential faults. To achieve this, the system calculates two 
metrics for each model: Squared Prediction Error (SPE) and 
Hotelling's T2 statistic, both with 95% confidence intervals. 
These metrics help identify deviations from normal behavior 
that might indicate a fault in the system.  

Once a fault is successfully detected, located, and its 
severity is determined in the top product quality variable (y1), 
the system attempts to compensate for it. The study compares 
two compensation methods: measurement reconstruction 
using the PCA-based FDI system and measurement 
replacement. Both methods are tested under two control 
strategies: a traditional PI controller and a more advanced 
model predictive control (MPC) strategy.  

Regarding designing FTC, the FTC (Fault Tolerant 
Control) is proposing a three-part system to address faults. 
The system has a detection element (FDI), a control element, 
and a supervisory element [12], [13], [15]. The supervisory 
element takes action to minimize the impact of the fault, using 
two possible methods: replacing faulty measurements or 
reconstructing them. This study focuses on these two methods 
for comparison with other control systems. Fig. 8 illustrates 
both approaches. 

 
Fig. 8. FTC structure.  

 Measurement replacement is a strategy used in fault 
tolerance control (FTC) systems to address situations where 
sensor malfunctions provide unreliable data. This method 
relies on a mathematical model of the system's behavior, built 
using a technique called subspace identification (SID). The 
training data for this model consists of system inputs and 
corresponding correct measurements collected during normal 
operation. When a sensor fault is detected, the supervisory unit 
within the FTC system activates the model. This model, 
essentially acting as a virtual sensor, generates an estimate to 
replace the faulty measurement. The effectiveness of 
measurement replacement hinges on the quality of the training 
data used for SID. High-quality training data ensures the 
model accurately reflects the system's behavior, allowing it to 
provide reliable estimates and maintain control system 
operation even in the presence of sensor faults.  

Measurement reconstruction aims to salvage the faulty 
measurement itself. It achieves this by calculating an iterative 
correction value that minimizes the squared prediction error 
(SPE). This correction value is derived using a PCA model 
built from a separate training dataset. The supervisory unit 
then applies this correction to the faulty measurement, 
essentially attempting to "fix" it. Fig. 8 illustrates this 
approach with a dashed line. 

IV. RESULTS AND DISCUSSIONS 
The experiment examined the system's reaction to a 

setpoint alteration for the primary product quality (y1). At the 
100-minute mark, the target end value (setpoint) of y1 was 
elevated by 0.4 units. Fig. 9 illustrates that the PI controller 
had a progressive response, ultimately attaining a steady 
adjustment and meeting the new objective. Nevertheless, the 
reaction was rather sluggish. The rising time for y1 to reach 
0.4 was 400 minutes. The system required 600 minutes to 
completely stabilize at the new setpoint value, signifying the 
settling period. This alteration in the setpoint also influenced 
other measured parameters inside the process, indicating 
possible interconnections among various components of the 
system.  

 

 
Fig. 9.  Output of PID control.  
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The efficacy of the control system utilizing Model 
Predictive Control (MPC) was assessed. Fig. 10 depicts the 
reaction to a 0.4-unit step adjustment in the intended ultimate 
quality (setpoint) of the top product (y1) at the 100-minute 
interval. The MPC exhibited robust performance. It attained 
the new setpoint of 0.4 for the highest product quality (y1) in 
a markedly reduced duration relative to the PI controller 
(achieved at 264 minutes). Moreover, as seen in Fig. 10, the 
alteration of the setpoint for y1 affected other measured 
variables in the process. Nonetheless, these modifications 
were seamless, and the other variables reverted to their 
setpoints with reasonable rapidity, signifying effective overall 
regulation by the MPC system. The rise time, defined as the 
duration for y1 to attain 90% of its new setpoint, is 200 
minutes in this instance.  

 

 
Fig. 10. Output of the Model Predictive Control (MPC).  

A. Proportional-Integral Controller vs. Model Predictive 
Controller 
Although PI controllers have fulfilled their function, 

optimally calibrated Model Predictive Control (MPC) 
presents a more advantageous option, clearly outperforming 
in both precision and reaction time (Fig. 9 & Fig. 10). MPC 
attains the target setpoint markedly more rapidly, resulting in 
expedited process modifications and possibly enhanced 
results. MPC has additional advantages beyond speed: more 
straightforward tuning methods than PI controllers, wider 
application across various processes, and automated dead time 
correction due to its integrated model. This paradigm 
facilitates intrinsic multivariable control, essential for intricate 
processes with interrelated variables. Moreover, MPC can 
accommodate measurable disruptions, self-regulating to 
sustain optimal performance. Nonetheless, the precision of the 
MPC's internal model is crucial; a more precise model results 
in enhanced overall system performance, as imperfections 
might constrain the MPC's full capabilities.  

B. Foreign Direct Investment Unit Outcomes  
The Fault Analyzer Toolbox in MATLAB Simulink was 

employed to replicate authentic operating circumstances and 
evaluate the system's resilience. This toolkit serves as an 
effective instrument for introducing controlled defects into the 
system. Two prevalent fault types had been identified: bias 
and drift. Bias faults denote a persistent deviation in the 
measured value, resembling scenarios such as sensor 
calibration discrepancies. Drift faults, conversely, represent a 
steady alteration in the observed value over time, maybe 
resulting from sensor deterioration or environmental 
influences. These controlled failures are included, as shown in 
Fig. 11 and Fig. 12, to assess the system's capacity to detect, 
isolate, and potentially correct for interruptions, therefore 
assuring seamless functioning under non-ideal situations.  

 

 
Fig. 11. PID Fault Output (Drift Fault)   

 

 
Fig. 12.  PID Fault Output (Bias Fault)  

C. T2 and SPE Outcomes  
The research delineates a failure detection and isolation 

(FDI) system grounded in Principal Component Analysis 
(PCA). This approach uses two primary metrics: the Squared 
Prediction Error (SPE) and Hotelling's T2 statistic. The SPE 
functions as the principal instrument for detecting anomalies 
in the controlled variables. When an SPE value is over a 
certain threshold, a defect is issued. An iterative procedure 
utilizing SPE data is employed to identify the precise fault 
type. The Hotelling's T2 index serves as a supplementary 
verification instrument.  

The evaluation of bias and drift faults demonstrated the 
efficacy of the PCA-based Fault Detection and Isolation 
system. Both SPE and Hotelling's T2 identified the bias 
problem at the 905-minute mark, indicating a little delay 
relative to the actual introduction of the fault. SPE detected 
the issue at 925 minutes for both PI and MPC control 
techniques in the context of the drift fault. Hotelling's T2, 
however, exhibited a delay, identifying the defect just at 929 
minutes. These data illustrate the markedly superior detection 
rate of SPE relative to Hotelling's T2, despite equivalent 
confidence levels. Fig. 13 and Fig. 14 display the SPE and 
Hotelling's T2 indices for drift and bias faults, respectively.  

Ultimately, the algorithm isolates the defect by 
pinpointing the variable with the largest SPE value that 
surpasses the detection threshold. When many variables 
exhibit SPEs over the threshold, the variable with the highest 
value is designated as defective. The graphic illustrates that 
the variable y1 possesses the greatest SPE value. This 
identifies y1 as the defective variable, facilitating focused 
troubleshooting and maintenance activities.  
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Fig. 13. FDI SPE and T2 hoteling output for drift fault.  

 

 
Fig. 14.  Output of FDI SPE and T2 hoteling for bias defect.  

D. FTC Unit Outcomes  
Following the examination of fault detection and isolation 

in both fault behaviors (bias fault and drift fault), the 
subsequent phase is the fault compensation procedure to 
achieve the fault-tolerant control (FTC) of the system [2], [3], 
[16], [17]. The methods employed for fault compensation 
include measurement reconstruction and measurement 
replacement. Measurement reconstruction is fundamentally a 
technique aimed at deriving the optimum value by optimizing 
the SPE value at a given moment. Measurement replacement 
adopts an alternative methodology, depending on the process 
model to substitute the erroneous value with the ideal one. 
Both measurement reconstruction and measurement 
replacement eliminate the impact of faults and deliver a more 
precise measurement for control reasons, as well as to mitigate 
the problem until the defective process unit is rectified [2], 
[16].  

E. Reconstruction of Measurements with Bias Fault  
The system effectively identified the bias fault 

simultaneously (905 minutes) for both Proportional-Integral 
(PI) and Model Predictive Control (MPC) techniques. Fault 
correction was promptly attained with minimal interference to 
other measures, illustrating the system's efficacy in managing 
bias faults. Fig. 15 and Fig. 16 illustrate the measurement 
reconstruction in a bias fault PCA-FDI unit [12], [15].  

F. Reconstruction of Measurements using Drift Fault  
Additionally examined the system's reaction to drift faults 

(progressively altering defects). The system required a little 
longer duration to identify and rectify the error in comparison 
to bias faults. In both PI and MPC instances, the issue was 
detected and rectified within an acceptable timeframe of 
around 25-30 minutes following its impact on measurements. 
This underscores the system's capacity to manage various 
error types while preserving process stability. Fig. 17 and Fig. 
18 illustrate the measurement reconstruction within a drift 
fault.  

 
Fig. 15. Reconstruction of measurements for model predictive control with 
fault-tolerant control in the presence of bias faults.  

 

 
Fig. 16. Reconstruction of measurements for proportional-integral fault-
tolerant control in response to bias faults.  

  
Fig. 17. Reconstruction of measurements for model predictive control with 
fault-tolerant control addressing drift faults.  

 

 
Fig. 18. Reconstruction of measurements for proportional-integral-based 
fault-tolerant control addressing drift faults.  

G. Measurement Substitution with Bias Error  
The system efficiently addressed bias errors throughout 

the measurement replacement process, swiftly attaining fault 
compensation while reducing disruptions to other 
measurements. The system's capability in addressing bias 
errors is evidenced by the swiftness of fault rectification. The 
substitution of measurements in a bias fault PCA-FDI unit is 
depicted in Fig. 19 and Fig. 20.  
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H. Substitution of Measurement Due to Drift Fault  
The system affected by the drift faults was analyzed. In 

this instance, the system required longer time to identify and 
rectify the issue in comparison to bias faults. In both PI and 
MPC cases, the fault was detected and rectified, taking 25 to 
30 minutes after introducing the faults in measurements. This 
illustrates the system's capacity to handle diverse fault types 
while maintaining process stability. Fig. 21 and Fig. 22 depict 
the measurement substitution in a drift fault PCA-FDI unit.  

The experiments validated the efficacy of the PCA-based 
FDI utilizing measurement reconstruction and replacement for 
fault compensation in the process. The system effectively 
identified and rectified both bias and drift problems with 
negligible effect on other readings. Ultimately, the 
examination of measurement reconstruction and replacement 
impacts on both PI and MPC controllers reveals largely 
comparable outcomes, with minor discrepancies in the MPC 
controller attributed to its more aggressive actions relative to 
the PI controller, resulting in slight variations in efficiency 
regarding measurement reconstruction or replacement.  

Further analysis has been made to make sure that the 
system could operate in various circumstances. This extended 
analysis is made by incorporating the process disturbances 
into the system prior to the FDI and FTC analysis. Fig. 23 
shows the process output with PI control after incorporating 
the process disturbances I1 and I2 into the three outputs y1, 
y2, and y7.  

As Fig. 23 shows, the process is successfully stable; 
however, the process outputs/inputs have exceeded the 
process constraints, which indicates that the system in reality 
is undesirable. Since MATLAB does not count process 
constraints unless they are implemented, the process stabilizes 
without process constraints under consideration.  

For the FDI unit, the new system’s training data is changed 
since the process output changed, and doing so, Fig. 24 shows 
that the faults are very much like the faults in the previous 
original analysis from the 900th min to the 1100th min. 

  

 
Fig. 19. Measurement substitution for model predictive control with fault-
tolerant control addressing bias faults.  

 

 
Fig. 20. Substitution of measurement for proportional-integral-based fault-
tolerant control in the context of bias faults.  

 
Fig. 21. Measurement substitution for model predictive control with fault-
tolerant control addressing drift faults.  

 
Fig. 22. Measurement substitution for proportional-integral-based fault-
tolerant control addressing drift faults.  

 

 
Fig. 23. PI output with disturbance.  
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Fig. 24. PI output with disturbance after drift fault.  

Fig. 25 shows the SPE and T2 charts, where it has been 
observed that the results are also very similar to the original 
analysis.  

 
Fig. 25. SPE and T2 charts for PI fault with disturbance.  

 Finally, the FTC unit is implemented with measurement 
replacement and measurement reconstruction, where it is 
observed that the results replicate the original analysis, as in 
Fig. 26 and Fig. 27.  

The FDI and FTC units designed in this paper give similar 
results even if there are disturbances, and that will happen if 
the training data injected into the system takes into account 
everything the system could encounter other than faults (i.e., 
if the training data does not consider disturbances and the 
implemented disturbances, the FDI and FTC unit will consider 
it as faults). 

 
Fig. 26. Measurement reconstruction for PI with disturbance-based FTC 
unit.  

 

 
Fig. 27. Measurement replacement for PI with disturbance-based FTC unit.  

V. CONCLUSIONS 
This study investigates a data-driven methodology for 

issue detection and tolerance in a simulated heavy oil 
fractionation process (Shell Control issue). The methodology 
uses Principal Component Analysis (PCA) to analyze sensor 
data and identify abnormalities that may indicate problems. 
Two fault-tolerant control systems were developed, utilizing 
PCA-based fault detection and isolation. These systems 
employed two fault compensation strategies: measurement 
reconstruction and substitution. The effectiveness of these 
systems and different control methods (MPC compared to PI 
controllers) was then evaluated. The results demonstrate the 
effectiveness of the proposed approaches. Both measurement 
reconstruction and replacement significantly alleviated bias 
and drift issues in the simulated readings. PCA employing 
Squared Prediction Error (SPE) showed effectiveness in 
defect detection, whereas Hotelling's T2 served as a 
comparable instrument. The FTC systems demonstrated 
effective performance with both MPC and PI controllers, 
showcasing their ability to detect and correct problems 
regardless of the control mechanism used. The research 
suggests that MPC offers greater flexibility in variable 
management, making it potentially more suitable for complex 
systems. The research presents a feasible data-driven 
approach for attaining fault tolerance in industrial processes.  

This study demonstrates the effectiveness of the PCA-
based FTC system in mitigating bias and drift faults; 
nonetheless, its future success relies on enhanced resilience. 
This necessitates an analysis of the system's response to a 
wider range of perturbations, including modifications to the 
process equipment, malfunctions in control actuators, 
significant deviations from the initial process model, and the 
ability to differentiate between sensor failures and external 
disturbances impacting the process. Implementing a self-
tuning method for the controller would represent a substantial 
advancement. This may entail online adaptation algorithms 
that modify controller settings in response to identified 
defects, allowing the system to sustain optimal process 
performance under unexpected conditions.  
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