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Abstract— With a main objective of enhancing process
stability and control, this paper explores the development and
use of a real-time soft sensor for predicting product composition
in Crude Distillation Units (CDUs). Developing a machine-
learning model able to continually analyze and forecast product
composition during crude oil distillation takes front stage. The
basis of the research is experimental data derived from dynamic
simulations of the CDU process employing Aspen-HYSYS form.
Time Series Linear Regression (TSLR), Time Series Partial
Least Squares (TSPLS), and Time Series Neural Networks
(TSNN) are among the approaches used in several soft sensor
models created. Performance measures, including root mean
square (RMS) and the coefficient of determination (R-squared),
guide evaluation of these models. Thanks to its better accuracy
and predictive capabilities, where it obtained the lowest Root
Mean Square (RMS) error of 0.8006 and the highest coefficient
of determination (R-squared), the Time-series Neural Network
(TSNN) stands out among the developed models as the best
option for distillation endpoint estimate in CDUs. Then linked
into the Aspen HYSYS modelling plant, the TSNN soft sensor
estimated diesel molar flow in real-time. Integrated with the
simulated plant, the model was trained on real-time data
originating from an Aspen HYSYS simulation of a crude oil
distillation unit, allowing continuous live estimates.

Keywords— Crude Distillation Units (CDUs), soft sensors,
Time Series Neural Networks (TSNN), Aspen HYSYS simulation,
product composition prediction, Root Mean Square (RMS) error,
and machine learning models.

I. INTRODUCTION

Within the field of industrial process optimization,
especially in relation to crude oil refining, the search for
improved efficiency and quality control still presents a great
difficulty. The first refining process depends much on crude
distillation units (CDUs), which separate crude oil into many
fractions depending on boiling points. Ensuring optimal
performance and satisfying strict product quality criteria
depend on accurate estimates of product composition
throughout CDU operations.

Current approaches monitor and control product
compositions in CDUs mostly using physical sensors and
laboratory analysis. Although these conventional methods
offer insightful analysis, they are sometimes constrained by
high prices, maintenance needs, and difficulty to record real-
time changes in product compositions. This dependence on
offline measurements emphasizes the requirement of more
flexible and affordable technologies able to run perfectly
inside the dynamic surroundings of a refinery.

The main goal of this work is to provide solutions by
means of a real-time soft sensor meant to estimate CDU
product compositions. Writing the mathematical model is a
tedious work that could be replaced by developing a soft
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sensor that is trained through machine learning. The learning
process of the soft sensor relies on the accuracy of the model
that is developed to replicate as a digital twin with the
industrial plant. These soft sensors would provide the CDU
product composition for monitoring and control. To provide a
better learning process, historical data is used across different
time zones that are used to validate the developed model.
While training, filtering information and spotting any
anomalies is critical to having an accurate soft sensor.
Methodologies will be used to simplify the process of soft
sensing.

Soft sensors have been created in particular contexts of
predicting the product composition by means of continuous
readings from process streams in a refinery crude distillation
unit. Partial least squares, artificial neural networks, and linear
regression analysis have been applied in the construction of
both multiple linear and nonlinear soft sensor models.

A. Aim of the paper

The objective of the project is to create a dependable
computational model or algorithm capable of accurately
forecasting the distillation endpoint in real-time during the
crude oil distillation process in a CDU, employing a soft
sensor that utilizes advanced mathematical or artificial
intelligence techniques to analyze extensive process data and
generate precise predictions of the distillation endpoint. When
executed proficiently, this technology may significantly boost
the operating efficiency of the crude distillation unit, improve
product quality, and optimize process control.

B. Motivation

For the purpose of determining the distillation endpoint in
crude distillation units, traditional monitoring approaches are
not only expensive but also less reliable. As a result, the
refining sector is now required to optimize efficiency, improve
process control, and comply with specifications and
regulations. Through the use of soft sensors, this work will
deliver a reliable and cost-effective real-time estimating
solution, therefore reducing the dependency on traditional
monitoring approaches and enhancing the stability and
controllability of refining operations. This will assist to boost
productivity in CDUs, as well as product quality and
compliance with regulatory requirements.

II. LITERATURE REVIEW

The conversion of crude oil into products such as diesel,
kerosene, and naphtha cover the foundation of the energy
sector. Central to this process are Crude Distillation Units
(CDUs), which necessitate precise control systems to uphold
efficiency and guarantee product quality. Traditionally,
physical sensors have been employed for measurement and



process management in these systems. Nonetheless, they
include disadvantages, such as substantial expenses for
installation and upkeep, in addition to delays stemming from
dependence on manual sampling and sluggish analytics.

The use of soft sensors has garnered much interest to
address these constraints. These data-driven models predict
process variables using accessible inputs, offering quicker
and more economical options compared to conventional
sensors [1], [2]. Recent advancements in machine learning
(ML) and artificial neural networks (ANNs) have
significantly enhanced the functionality of soft sensors,
enabling real-time monitoring of intricate systems [3], [4],
[5]. This paper examines improvements, practical
applications, obstacles, and prospects for the integration of
soft sensors with advanced technologies like digital twins.

Soft sensors have progressed markedly in conjunction
with improvements in computing techniques and algorithms.
Initial versions, as emphasized by [1], were based on linear
and nonlinear modeling methodologies. These models relied
significantly on data preparation, including outlier detection
and dataset normalization, to enhance their prediction
efficacy. As system complexity increased, lincar models
failed to adequately represent the complicated dynamics of
CDU operations, necessitating the use of increasingly
sophisticated nonlinear methodologies.

Kubosawa et al. (2022) demonstrated the potential of
hybrid models that integrate dynamic simulations with
artificial intelligence techniques [3]. The integration of
approaches not only augmented the flexibility of soft sensors
to fluctuating operating circumstances but also fortified their
resilience. Liithje et al. (2020) illustrated the use of hybrid
models, which combine data-driven approaches with
mechanical process comprehension, to nonlinear predictive
control, yielding dependable results across diverse situations
[6].

Artificial neural networks are very adept at managing the
nonlinearities intrinsic to CDU systems. By analyzing
previous data, these networks can forecast essential factors,
like feed composition and the quality of final goods. GaJang
et al. (2010) demonstrated the application of feedforward
neural networks in mapping intricate interactions between
input and output variables [7].

Kataria and Singh (2017) achieved more progress by
utilizing recurrent neural networks (RNNs) for temporal data.
The capacity of RNNSs to handle sequential data via feedback
loops renders them very suitable for dynamic processes such
as crude oil distillation. Their research emphasized the
enhanced efficacy of RNN-based sensors in environments
with fluctuating operating parameters, in contrast to
conventional static models [8].

Expanding upon this foundation, Park et al. (2015)
created ANN-based soft sensors for real-time feed
monitoring, therefore diminishing the necessity for physical
analyzers [2], [9]. The capacity to adjust to real-world data
and deliver actionable insights highlights the significance of
ANN s in contemporary refining operations [7], [10], [11].

In CDU situations, where conditions are always changing,
the analysis of time-series data is essential. Advanced
designs, like Long Short-Term Memory (LSTM) networks,
have demonstrated notable efficacy for certain tasks.
Chatterjee and Saraf (2004) investigated the use of LSTM
models for forecasting product compositions in distillation
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processes, notwithstanding the presence of noise or
incomplete data. The selective memory retention properties
of LSTMs guarantee precision and dependability in these
dynamic systems [12].

A primary advantage of soft sensors is their capacity to
deliver real-time insights on process factors. Oster et al.
(2023) illustrated the application of machine learning-driven
soft sensors in vacuum distillation for the continuous and
precise forecasting of product characteristics [4]. This
capacity allows operators to expedite informed decision-
making, hence improving overall system efficiency and
product quality.

Soft sensors are essential for predictive maintenance.
These systems mitigate unexpected downtime by analyzing
patterns and identifying early warning indicators of
equipment deterioration. Barbosa (2014) created a soft sensor
to assess the quality of hydrocracker products, which
facilitated process management and offered critical insights
into equipment health. This proactive strategy guarantees the
optimization of maintenance schedules and the reduction of
interruptions [13].

The efficacy of soft sensors is largely contingent upon the
quality of the data utilized for their training. Inaccurate,
deficient, or prejudiced datasets can profoundly impact
model precision [14]. To resolve these challenges,
approaches like noise reduction, feature engineering, and data
augmentation must be employed during the preprocessing
phase.

Although machine learning models exhibit excellent
accuracy, they frequently face criticism for their insufficient
interpretability. Operators in essential sectors, like as
refining, must rely on the insights offered by these models.
Hybrid methodologies, integrating domain knowledge with
data-centric modeling, provide a more visible and
comprehensible framework [15].

Dynamic operational contexts necessitate models capable
of adapting to fluctuating input data instantaneously. Kim et
al. (2022) investigated adaptive learning algorithms that may
self-update, therefore obviating the necessity for regular
manual retraining and maintaining consistent performance
across diverse settings.

Digital twins—virtual representations of physical
systems—are transforming process optimization. When
combined with soft sensors, digital twins offer an extensive
framework for monitoring and predictive analysis. Li and Sun
(2023) showed that the integration of these technologies
improves decision-making and process efficiency in refinery
operations, facilitating the development of more intelligent
and responsive systems [15].

Soft sensors, driven by advancements in artificial
intelligence and machine learning, signify a significant
advancement in CDU process management [9], [16]. They
provide real-time surveillance, anticipatory maintenance, and
improved operational efficacy. Confronting issues like data
integrity, openness, and flexibility will be essential for
optimizing their potential. The amalgamation of soft sensors
with digital twins underscores their revolutionary influence,
solidifying their status as a fundamental element of
innovation in the refining sector.



III. DESIGN AND IMPLEMENTATION

This study utilizes HYSYS's dynamic simulation model,
which is already under control, to generate data for
understanding the dynamic behavior of a Crude Distillation
Unit (CDU) with respect to its molar flow of diesel. Inspired
by the research in "Development of Soft Sensors for Crude
Distillation Unit Control" by Mohler et al., we focus on six
key input variables identified as the most likely to influence
diesel output: column top temperature, column bottom
temperature, light gas oil temperature, heavy gas oil
temperature, pump-around temperature, and pump-around
flow rate.

Each input variable is controlled by a PID controller
within the HYSYS model. By implementing step changes in
the setpoints of these PID controllers, we simulate
disturbances and observe the resulting dynamic response of
the CDU's molar flow of diesel. This approach generates
valuable time-series data, capturing how the CDU behaves
under varying operating conditions triggered by changes in
these critical input variables. Analyzing this data will be
instrumental in gaining insights into the dynamic relationship
between these key factors and the molar flow of diesel, paving
the way for potential future control strategy improvements.

As the first step, I selected relevant data from the plant
database, which was obtained through dynamic simulations in
Aspen HYSYS. There are six input variables chosen to
analyze their effect on the diesel composition over time:
column top temperature, kerosene temperature, diesel
temperature, diesel pump-around temperature, diesel pump-
around flow rate, and column bottom temperature. The diesel
molar flow (composition) served as the output variable. To
investigate these relationships, seven PID controllers were
implemented in HYSYS. Six controllers manipulated the
input variables, while the final one regulated the diesel molar
flow, as shown in Fig. 1. The simulation of the whole plant is
shown in Fig. 2.

The first PID controller, FIC-102, is developed to maintain
the desired molar flow rate of the diesel product. On the
Connections tab in Fi, the process variable (PV) was defined
in the first. This variable represents the actual diesel molar
flow measured by the plant, which FIC102 will continuously
monitor and attempt to regulate at the setpoint. Second, the
output target object (OT) was designated. This signifies the
element the controller will adjust to influence the process
variable. In this case, FIC-102 manipulates the actuator
position of valve VLV-100 to control the diesel molar flow.

Fig. 1. The simulate process flow diagram of the CDU plant
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Fig. 3. Simulation of the whole plant

Next, on the Parameters tab, as in Fig. 4, operational
parameters for FIC-102 were specified. The action mode was
set to "Direct", indicating a proportional relationship between
the controller output and the valve position. Additionally, the
setpoint, the desired diesel molar flow value, was defined
along with the minimum and maximum acceptable values for
the process variable. Finally, tuning parameters, which
influence the controller's responsiveness and stability, are
established based on process knowledge and engineering
judgment.
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Fig. 4. Parameter’s tab of FIC-102 controller



Once configured, the controller was activated by switching
its mode to "Auto" or "Man". The plant is initially operated in
manual mode to observe the impact of the input variables on
the diesel output. However, to gather data for analysis, model
testing was conducted using FIC-102. This testing process
involved defining several parameters. A step change is
introduced to have variations in the setpoint. The signal
variation amplitude was determined based on the magnitude
of this variation. The time interval was specified to produce
the wanted frequency of the data points to be produced. The
testing time length is defined to identify the total duration of
the model test.

After setting these parameters, the simulation was run for
six hours. The test results were exported to Excel. This data is
used to build and train the soft sensor model. The plot of the
data of the bottom temperature in a time series plot is shown
in Fig. 6. In addition, the time series plot of the Diesel Molar
Flow is also shown in Fig. 6. As there is some instability in
the first readings produced, this will not be used in the training
process, as it can potentially cause problems with the model if
included in the training data. Hence, this data is removed to
avoid building an inefficient model.
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Fig. 5. Model testing tab of FIC-102 controller

A. Data Analysis

A correlation matrix is a fundamental statistical tool that
provides insights into the relationships between variables in a
dataset. It consists of a square matrix where each cell
represents the correlation coefficient between two variables.
Correlation coefficients measure the strength and direction of
the linear association between variables, ranging from -1 to 1.
A value of 1 indicates a perfect positive correlation, 0
represents no correlation, and -1 indicates a perfect negative
correlation, whereas the red colors denote a positive
correlation, and the blue represents a negative correlation
shown in Fig. 8.
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By examining the correlation matrix, researchers and
analysts can identify patterns, determine the strength of
relationships, and understand the dependencies between
variables. This information is crucial for various data analysis
tasks, such as identifying key factors, exploring
multicollinearity, selecting variables for models, and gaining
insights into the dataset's underlying structure. The correlation
matrix is a powerful tool that aids in summarizing and
visualizing the relationships between variables, providing a
foundation for further analysis and interpretation.

The correlation matrix provided shows the correlation
coefficients between the output variable output diesel molar
flow and the input variables column top temperature, kerosene
temperature, diesel temperature, diesel pump-around
temperature, diesel pump-around flow rate, and column
bottom temperature. The correlation coefficient between FIC-
102 and itself shows the value of 1, as it represents the
correlation of the variable with itself, which is perfect positive
correlation.

Looking at the correlation coefficients, it is observed that
diesel molar flow (FIC-102) has a weak positive correlation
with TIC-102 (0.3063), while TIC-103 (0.3784) has the
strongest correlation with the output, indicating that as the
input variable increases, FIC-102 tends to slightly increase.
On the other hand, FIC-102 has a weak negative correlation
with TIC-105 (0.1284), TIC-101 (-0.1669), and FIC-101 (-
0.0914), implying that as these variables increase, FIC-102
tends to decrease slightly.

There are some correlations between the input variables
that are worth noting. As we can see,

TIC-102 and TIC-105 exhibit a strong negative correlation
(-0.6196), while TIC-104 and TIC101 show a strong negative
correlation (-0.6514). These high-magnitude correlations
suggest the presence of collinearity between these pairs of
variables. The cross-relation of bottom temperature and diesel
molar flow is shown in Fig. 9.

Cross-correlation analysis is also a valuable tool for
investigating the relationship between two time series data
sets, particularly in how changes in one variable might
influence another with a possible time lag. In the simulated
case, the cross-correlation is used to analyze the relationship
between the manipulated operating variables (such as column
top temperature) and the diesel molar flow throughout the
simulation. This will help in identifying how adjustments to
these operating conditions might impact the diesel production
over time. By observing the shift (time lag) at which the
correlation between variables peaks, one can gain insights into
the cause-and-effect relationships within the process.

In the relationship between two time series (x(t) and y(t)),
the series may be related to past lags of the x-series. The
sample cross-correlation function (CCF) is helpful for
identifying lags of the x-variable that might be useful
predictors of y(t).

x-variable(s) will be set to be the leading variable of the y-
variable to predict future values of y. Thus, one will usually
be looking at what’s happening at the negative values of the
cross-correlation plot as shown in Fig. 8.

In Fig. 10, the cross-correlation (CC) plot will be used to
determine the time lags that have strong correlations with
future y values, and these lagged x variables will be included
with the input data to build the machine learning models.
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However, adding too much data will further complicate the
model, so that’s why only the three most significant
correlations are going to be included.

B. Model Development

The data is initially generated in HYSYS and
subsequently employed in the development of three distinct
varieties of time series models in MATLAB. The procedure
commences with two linear models, TSMLR and TSPLS, and
culminates with the nonlinear TSNN model. The results of
each model are analyzed to ascertain which one possesses the
most predictive capacity. Consequently, these models are
implemented to forecast the composition of diesel.

Commencing with the TSMLR model, the lagged variant
of the original data was implemented to improve the precision
of our model. Our investigation subsequently included the k-
1 lag, k-2 lag, and k-3 lag as predictors, which were identified
through cross-correlation. The data was partitioned into a
training set, which contains 70% of the original dataset for
coefficient estimation, and a testing set, which contains the
remaining 30% to assess the model's performance in order to
ensure the model's resilience. This allocation enables us to
assess the efficacy of our model on data that is both novel and
previously unexplored. The "regress()" function in MATLAB
is employed to develop the prediction model, which is based
on sophisticated regression methodologies.

Related to TSPLS reflecting the time series modeling,
lagged duplicates of the original data were implemented as
predictors. To identify potential temporal correlations in the
data, cross-correlation analysis was implemented by selecting
delays of k-1, k-2, and k-3. The data was subsequently divided
into training (70%) and assessment (30%) sets. The
relationship between the input variables and the objective
variable was modeled using partial least squares (PLS)
regression using the "plsregress" function in MATLAB.
Twenty-four latent variables were chosen within the PLS
framework to accurately represent the fundamental structure
of the data.

The TSNN architecture was generated using the "ntstool”
program in MATLAB. An iterative approach is employed to
determine the optimal network architecture. A fundamental
architecture is developed with a single concealed layer and six
neurons, which is equivalent to the number of input variables.
Consequently, the predictive efficacy was improved by
increasing the number of neurons. The final network consisted
of a single concealed layer that contained ten neurons. This
methodology incorporated a three-second time delay as a
conspicuous characteristic. This enabled the network to
encode temporal relationships by learning from both the
current input and historical values in the time series. The
concealed layer implemented the "tanh" activation function to
adapt to modeling non-linear correlations in the data. To
generate continuous output values that are pertinent to
regression tasks, the linear activation function was employed
in the output layer. The "Levenberg-Marquardt" method,
which is widely recognized for its efficacy, was employed to
train the network. To mitigate overfitting, a deliberate data
partitioning strategy was implemented: 70% of the data was
allocated for training, 10% for validation during the training
process to assess performance, and the remaining 20% was
reserved for final testing and assessment.
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The objective of controlling the fractionator is to maintain
the desired values for the endpoints of the top-draw product
(yl), side-draw product (y2), and bottom reflux temperature
(y7). This is achieved by manipulating the flow rates of the
top draw (ul), side draw (u2), and the heat transfer rate of the
bottom reflux (u3). The heat transfer rate (u3) is further
adjusted using a control loop that utilizes the hot steam flow
rate as a control variable. Additionally, there are two measured
disturbances in the system: the heat transfer rate of the upper
reflux (I11) and the intermediate reflux (12). These flows
remove heat from the system and are subsequently reboiled in
other sections of the plant.

TABLE 1. STATISTICAL PARAMETERS OF TSMLR MODEL
Parameters
R’ F-test p-value RMSE
0.7058 6.75 0.0000 11.2509
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Fig. 11. TSNN architecture

Predicted vs. Actual Response (Multilinear Regression)
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Fig. 12. Scatter plot to TSMLR model

IV. RESULTS AND DISCUSSIONS
A. TSMLR model development results

Based on the analysis of the linear model, Table I presents
the statistical parameters. The coefficient of determination
(R?) value of 0.7058 indicates a relatively good level of
explained variability in the response variable by the
predictors. Although not exceptionally high, it suggests that
the model captures a significant portion of the data's variation.
The F-test yielded a significant F-value of 6.75 (p-value =
0.0000), indicating a rejection of the null hypothesis of no
linear dependence; in other words, there is no autocorrelation
of error relation. This confirms the presence of a relationship
between the predictors and the response variable. It is worth
noting that the Root Mean Squared Error (RMSE) of 11.2509
represents the average deviation of the model's predictions
from the actual values, suggesting an acceptable level of
accuracy. Overall, while the model performs well, there is
room for improvement in terms of capturing more of the
variability and reducing prediction errors.

The time series plot shows in Fig. 12 and Fig. 13 that the
model’s predictions (orange line) generally follow the trend of
the actual values (blue line). However, there are some
deviations between the two lines. This indicates that the
model’s predictions are not perfectly accurate, but they are on
the right track.
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B. TSPLS model development results

The Time Series Partial Least Square (TSPLS) model
yielded highly promising results, as indicated by the statistical
parameters presented in Table II. The correlation coefficient
(R) between the predicted and actual values was found to be
0.90993, suggesting a strong positive linear relationship. This
implies that the TSPLS model effectively captured the
underlying patterns and trends present in the time series data.
The coefficient of determination (R-squared or R?) was
calculated to be 0.82797, indicating that approximately 82.8%
of the variance in the response variable could be explained by
the predictors included in the model. This demonstrates the
model's ability to effectively explain and predict the observed
outcomes. The Root Mean Squared Error (RMSE) was
determined to be 8.7786, which represents the average
deviation between the predicted and actual values. A lower
RMSE value signifies a higher level of accuracy, suggesting
that the TSPLS model exhibited satisfactory predictive
performance. Additionally, an F-test was conducted, resulting
in an F-value of 7.2193 and a corresponding p-value of
6.5281e!*. The significant F-test indicates that the predictors
included in the model collectively have a significant impact
on predicting the response variable. In summary, the TSPLS
model demonstrated strong predictive power, capturing the
underlying patterns in the time series data with high accuracy.

From Fig. 14 and Fig. 15, it can be observed that the
predicted values closely align with the actual values. This
alignment indicates that the TSPLS model has a good level of
accuracy in forecasting and analyzing the time series data. The
proximity of the actual and predicted lines suggests that the
model effectively captures the trends and fluctuations in the
data.

TABLE II. STATISTICAL PARAMETERS OF TSPLS MODEL
Parameters
R’ F-test p-value RMSE
0.82797 7.2193 6.5281e™ 8.7786
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Predicted vs. Actual Response (Partial Least Square)
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C. TSNN model development results

The Time Series Neural Network (TSNN) emerged as the
top performer among the models evaluated, achieving the
lowest Root Mean Squared Error (RMSE) and highest R-
squared values across all datasets. As summarized in Table III,
it achieved the lowest Root Mean Squared Error (RMSE) of
0.1659 during training, indicating high accuracy in estimating
product composition in the Crude Distillation Unit (CDU).
Furthermore, TSNN exhibited impressive correlation
coefficients, with an R-value of 0.9995 during training and an
R? value of 0.9997, indicating a strong linear relationship
between the predicted and actual values. These results were
further validated during the validation and test stages, where
TSNN achieved RMSE wvalues of 0.5245 and 0.8008,
respectively, as well as high R and R-squared values of
0.9982, 0.9991 and 0.9968, 0.9984, respectively.

Further analysis of the results are generated as shown in
Fig. 16 and Fig. 17. Fig. 16 illustrates the histogram of target-
output errors with 20 bins. Analyzing the plot, this study notes
that errors fall within a very small value of 0.007254. All the
error training points are close to this point. Consequently, the
error histogram in this context emphasizes extremely good
outcomes.



TABLE IIL STATISTICAL PARAMETERS OF TSNN MODEL
. Parameters
Testing RMSE R 'Y
Training 0.1659 0.9995 0.9997
Validation 0.5245 0.9982 0.9991
Test 0.8006 0.9968 0.9984

The performance plotted in Fig. 17 shows iterations that
the process of training has been done. It specifies how much
the final error and gradient are. The training process ended at
the 53" iteration, where it is not the best choice for a trained
network. The algorithm chooses the 47" iteration because it
has a less valid error in comparison to the training error. It
means that, by continuing the process, the iteration may have
a performance for training data, but this is not done to prevent
overfitting causing lower performance. The minimum mean
squared error (MSE) is 0.52451 at epoch 74.

This study uses the error autocorrelation function to
examine how the predicting errors are interconnected in time
to verify the network’s performance. In this case, Fig. 18
reveals a single nonzero value at zero lag, representing the
mean square error, which is approximately 0.85, indicating a
high level of accuracy. Apart from the zero-lag correlation,
most of the predicting errors fit inside the confidence limit
around zero, confirming the efficiency of the predicting
approach.

Error Histogram with 20 Bins

I Training
I Validation
I Test

Zero Error

300

250

Instances
- N
o o
S 3

o
=]

o
=]

O N © ~ -~ - @ ©o -~ M
BEE8F5Io BT I8LLBI=ERS
MO0 GTOTOENDETOTOT OO
TO® N 2ITBETR O GN®wo T T
o 1 oo o o
]
o

Fig. 16. Error histogram with 20 bins

Best Validation Performance is 0.52451 at epoch 47
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Fig. 17. The best performance of training, testing, and validation using
TSNN
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Fig. 18. Autocorrelation of error

Fig. 19 depicts the model's performance in predicting
diesel output. A visual comparison between the model's
predictions (outputs) and the actual measured diesel
production data (targets) is presented as a time series plot. This
plot allows us to observe the response of the neural network,
comparing the predicted values with the actual values over
time. Additionally, a plot of the prediction errors (the
difference between predicted and actual values) is included.
The model successfully captures the overall trend of diesel
production, demonstrating its ability to represent the target
behavior. Furthermore, most of the prediction errors fall
within a range of less than -5 to 5, indicating a high accuracy.

The time series neural network continued to showcase its
exceptional performance, achieving impressive outcomes
against additional tests. Table IV presents the results obtained,
where it achieved an RMSE value of 0.1933, indicating a high
level of accuracy in estimating product composition.
Moreover, a high R-squared value of 0.9995 is achieved,
reflecting the accuracy and reliability of TSNN in predicting
product composition. These findings reinforce the robustness
and effectiveness of the TSNN model in real-world scenarios
and solidify its position as the top performer among the
evaluated models for arterial intelligence.
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Fig. 19. Time series response plot of target series



TABLE IV. ADDITIONAL TEST STATISTICAL PARAMETERS OF TSNN
MODEL
Testi Parameters
esting RMSE R R
Additional test 0.1933 0.9990 0.9995

D. Real-time soft sensing implementation

The implementation of the TSNN model as a real-time soft
sensor in Aspen HYSYS was done using the three different
models, TSMLR, TSPLS, and TSNN. By seamlessly
integrating the model into the simulation environment, the
continuous estimation of the properties of CDU products was
enabled based on live measurements of key input variables.
This integration was made possible through a custom

MATLAB-HYSYS interface code, which acts as a
communication bridge between the platforms.
To facilitate this integration, the comprehensive

MATLAB-HYSYS interface code allows for real-time data
exchange and interaction between the soft sensor model in
MATLAB and the simulation plant in HYSYS, which is
validated. With the integration in place, the soft sensor now
receives real-time input data from HYSYS, enabling it to
make accurate estimations of the diesel molar flow.

Fig. 20 demonstrates the prediction accuracy of the real-
time soft sensor. where the predicted values closely match the
actual values, indicating the model's exceptional accuracy in
real-time forecasting. The near-perfect proximity of the lines
suggests that the soft sensor effectively captures the trends and
dynamic fluctuations observed in the direct measurement data.

Table V shows the RMSE and R values for the three
different models. The performance of the soft sensors was best
with the TSNN model, TSPLS, and TSMLR, respectively.
The real-time soft sensing was achievable by all different
methods; however, with variable accuracy relying on the
developed model. This is in agreement with the visual results
in Fig. 20.
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Fig. 20. Real-time soft sensor prediction based on live measurements of
input variables.
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TABLE V. PERFORMANCE COMPARISON OF SOFT SENSOR MODELS

Parameters
Model RMSE R
TSMLR 11.2509 0.7058
TSPLS 8.7786 0.82797
TSNN 0.8006 0.9968

V. CONCLUSIONS

The paper sought to enhance product composition
monitoring in crude oil distillation units (CDUs) by the
creation of a real-time soft sensor for estimating distillation
endpoints.  Conventional approaches are expensive,
ineffective, and devoid of internet metrics. The study
effectively developed a computational model to forecast
distillation endpoints in real-time utilizing diverse machine
learning methods. Dynamic process data was produced from
an Aspen HYSYS simulation, thereafter preprocessed and
analyzed to ascertain input variables and identify outliers or
absent values.

Three soft sensor models were created employing distinct
time-series methodologies: Time Series Multi Linear
Regression (TSMLR), Time Series Partial Least Squares
(TSPLS), and Time Series Neural Network (TSNN). A
systematic escalation in model complexity was implemented,
with each successive model enhancing the preceding one. This
methodology facilitated a systematic assessment and
comparison of model efficacy. The TSMLR model
established a preliminary baseline but demonstrated restricted
accuracy, with an RMSE of 11.2509. The TSPLS method
enhanced this with an RMSE of 8.7786 by identifying
nonlinear interactions via latent variables. The TSNN model
yielded the most favorable outcomes, with an RMSE of
0.8006 and an R-squared value of 0.9968 during validation
with previously unexamined test data. The optimized TSNN
soft sensor was subsequently installed in the Aspen HYSYS
environment to illustrate its capability for continuous live
estimates of the distillation endpoint. The successful
implementation of the soft sensor was achieved by providing
continuous and reliable estimations of product properties,
which would support monitoring, process control, stability
enhancement, decision-making, and quality control.
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