
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Developing a Real-Time Soft Sensor for Product 
Composition Estimation 

Bassam Mohamed Alhamad  
Department of Chemical Engineering 

University of Bahrain 
Isa Town, Bahrain 

balhamad@uob.edu.bh 

Rim Ahmed AlGendi 
Department of Chemical Engineering 

University of Bahrain 
Isa Town, Bahrain 

reemalgendy1@gmail.com 

Abstract—	 With a main objective of enhancing process 
stability and control, this paper explores the development and 
use of a real-time soft sensor for predicting product composition 
in Crude Distillation Units (CDUs). Developing a machine-
learning model able to continually analyze and forecast product 
composition during crude oil distillation takes front stage. The 
basis of the research is experimental data derived from dynamic 
simulations of the CDU process employing Aspen-HYSYS form. 
Time Series Linear Regression (TSLR), Time Series Partial 
Least Squares (TSPLS), and Time Series Neural Networks 
(TSNN) are among the approaches used in several soft sensor 
models created. Performance measures, including root mean 
square (RMS) and the coefficient of determination (R-squared), 
guide evaluation of these models. Thanks to its better accuracy 
and predictive capabilities, where it obtained the lowest Root 
Mean Square (RMS) error of 0.8006 and the highest coefficient 
of determination (R-squared), the Time-series Neural Network 
(TSNN) stands out among the developed models as the best 
option for distillation endpoint estimate in CDUs. Then linked 
into the Aspen HYSYS modelling plant, the TSNN soft sensor 
estimated diesel molar flow in real-time. Integrated with the 
simulated plant, the model was trained on real-time data 
originating from an Aspen HYSYS simulation of a crude oil 
distillation unit, allowing continuous live estimates.  

Keywords—	 Crude Distillation Units (CDUs), soft sensors, 
Time Series Neural Networks (TSNN), Aspen HYSYS simulation, 
product composition prediction, Root Mean Square (RMS) error, 
and machine learning models.  

I. INTRODUCTION

Within the field of industrial process optimization, 
especially in relation to crude oil refining, the search for 
improved efficiency and quality control still presents a great 
difficulty. The first refining process depends much on crude 
distillation units (CDUs), which separate crude oil into many 
fractions depending on boiling points. Ensuring optimal 
performance and satisfying strict product quality criteria 
depend on accurate estimates of product composition 
throughout CDU operations.  

Current approaches monitor and control product 
compositions in CDUs mostly using physical sensors and 
laboratory analysis. Although these conventional methods 
offer insightful analysis, they are sometimes constrained by 
high prices, maintenance needs, and difficulty to record real-
time changes in product compositions. This dependence on 
offline measurements emphasizes the requirement of more 
flexible and affordable technologies able to run perfectly 
inside the dynamic surroundings of a refinery.  

The main goal of this work is to provide solutions by 
means of a real-time soft sensor meant to estimate CDU 
product compositions. Writing the mathematical model is a 
tedious work that could be replaced by developing a soft 

sensor that is trained through machine learning. The learning 
process of the soft sensor relies on the accuracy of the model 
that is developed to replicate as a digital twin with the 
industrial plant. These soft sensors would provide the CDU 
product composition for monitoring and control. To provide a 
better learning process, historical data is used across different 
time zones that are used to validate the developed model. 
While training, filtering information and spotting any 
anomalies is critical to having an accurate soft sensor. 
Methodologies will be used to simplify the process of soft 
sensing.  

Soft sensors have been created in particular contexts of 
predicting the product composition by means of continuous 
readings from process streams in a refinery crude distillation 
unit. Partial least squares, artificial neural networks, and linear 
regression analysis have been applied in the construction of 
both multiple linear and nonlinear soft sensor models.  

A. Aim of the paper
The objective of the project is to create a dependable

computational model or algorithm capable of accurately 
forecasting the distillation endpoint in real-time during the 
crude oil distillation process in a CDU, employing a soft 
sensor that utilizes advanced mathematical or artificial 
intelligence techniques to analyze extensive process data and 
generate precise predictions of the distillation endpoint. When 
executed proficiently, this technology may significantly boost 
the operating efficiency of the crude distillation unit, improve 
product quality, and optimize process control. 

B. Motivation
For the purpose of determining the distillation endpoint in

crude distillation units, traditional monitoring approaches are 
not only expensive but also less reliable. As a result, the 
refining sector is now required to optimize efficiency, improve 
process control, and comply with specifications and 
regulations. Through the use of soft sensors, this work will 
deliver a reliable and cost-effective real-time estimating 
solution, therefore reducing the dependency on traditional 
monitoring approaches and enhancing the stability and 
controllability of refining operations. This will assist to boost 
productivity in CDUs, as well as product quality and 
compliance with regulatory requirements. 

II. LITERATURE REVIEW

The conversion of crude oil into products such as diesel, 
kerosene, and naphtha cover the foundation of the energy 
sector. Central to this process are Crude Distillation Units 
(CDUs), which necessitate precise control systems to uphold 
efficiency and guarantee product quality. Traditionally, 
physical sensors have been employed for measurement and 
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process management in these systems. Nonetheless, they 
include disadvantages, such as substantial expenses for 
installation and upkeep, in addition to delays stemming from 
dependence on manual sampling and sluggish analytics. 

The use of soft sensors has garnered much interest to 
address these constraints. These data-driven models predict 
process variables using accessible inputs, offering quicker 
and more economical options compared to conventional 
sensors [1], [2]. Recent advancements in machine learning 
(ML) and artificial neural networks (ANNs) have 
significantly enhanced the functionality of soft sensors, 
enabling real-time monitoring of intricate systems [3], [4], 
[5]. This paper examines improvements, practical 
applications, obstacles, and prospects for the integration of 
soft sensors with advanced technologies like digital twins. 

Soft sensors have progressed markedly in conjunction 
with improvements in computing techniques and algorithms. 
Initial versions, as emphasized by [1], were based on linear 
and nonlinear modeling methodologies. These models relied 
significantly on data preparation, including outlier detection 
and dataset normalization, to enhance their prediction 
efficacy. As system complexity increased, linear models 
failed to adequately represent the complicated dynamics of 
CDU operations, necessitating the use of increasingly 
sophisticated nonlinear methodologies. 

Kubosawa et al. (2022) demonstrated the potential of 
hybrid models that integrate dynamic simulations with 
artificial intelligence techniques [3]. The integration of 
approaches not only augmented the flexibility of soft sensors 
to fluctuating operating circumstances but also fortified their 
resilience. Lüthje et al. (2020) illustrated the use of hybrid 
models, which combine data-driven approaches with 
mechanical process comprehension, to nonlinear predictive 
control, yielding dependable results across diverse situations 
[6]. 

Artificial neural networks are very adept at managing the 
nonlinearities intrinsic to CDU systems. By analyzing 
previous data, these networks can forecast essential factors, 
like feed composition and the quality of final goods. GaJang 
et al. (2010) demonstrated the application of feedforward 
neural networks in mapping intricate interactions between 
input and output variables [7]. 

Kataria and Singh (2017) achieved more progress by 
utilizing recurrent neural networks (RNNs) for temporal data. 
The capacity of RNNs to handle sequential data via feedback 
loops renders them very suitable for dynamic processes such 
as crude oil distillation. Their research emphasized the 
enhanced efficacy of RNN-based sensors in environments 
with fluctuating operating parameters, in contrast to 
conventional static models [8]. 

Expanding upon this foundation, Park et al. (2015) 
created ANN-based soft sensors for real-time feed 
monitoring, therefore diminishing the necessity for physical 
analyzers [2], [9]. The capacity to adjust to real-world data 
and deliver actionable insights highlights the significance of 
ANNs in contemporary refining operations [7], [10], [11]. 

In CDU situations, where conditions are always changing, 
the analysis of time-series data is essential. Advanced 
designs, like Long Short-Term Memory (LSTM) networks, 
have demonstrated notable efficacy for certain tasks. 
Chatterjee and Saraf (2004) investigated the use of LSTM 
models for forecasting product compositions in distillation 

processes, notwithstanding the presence of noise or 
incomplete data. The selective memory retention properties 
of LSTMs guarantee precision and dependability in these 
dynamic systems [12]. 

A primary advantage of soft sensors is their capacity to 
deliver real-time insights on process factors. Oster et al. 
(2023) illustrated the application of machine learning-driven 
soft sensors in vacuum distillation for the continuous and 
precise forecasting of product characteristics [4]. This 
capacity allows operators to expedite informed decision-
making, hence improving overall system efficiency and 
product quality. 

Soft sensors are essential for predictive maintenance. 
These systems mitigate unexpected downtime by analyzing 
patterns and identifying early warning indicators of 
equipment deterioration. Barbosa (2014) created a soft sensor 
to assess the quality of hydrocracker products, which 
facilitated process management and offered critical insights 
into equipment health. This proactive strategy guarantees the 
optimization of maintenance schedules and the reduction of 
interruptions [13]. 

The efficacy of soft sensors is largely contingent upon the 
quality of the data utilized for their training. Inaccurate, 
deficient, or prejudiced datasets can profoundly impact 
model precision [14]. To resolve these challenges, 
approaches like noise reduction, feature engineering, and data 
augmentation must be employed during the preprocessing 
phase. 

Although machine learning models exhibit excellent 
accuracy, they frequently face criticism for their insufficient 
interpretability. Operators in essential sectors, like as 
refining, must rely on the insights offered by these models. 
Hybrid methodologies, integrating domain knowledge with 
data-centric modeling, provide a more visible and 
comprehensible framework [15]. 

Dynamic operational contexts necessitate models capable 
of adapting to fluctuating input data instantaneously. Kim et 
al. (2022) investigated adaptive learning algorithms that may 
self-update, therefore obviating the necessity for regular 
manual retraining and maintaining consistent performance 
across diverse settings. 

Digital twins—virtual representations of physical 
systems—are transforming process optimization. When 
combined with soft sensors, digital twins offer an extensive 
framework for monitoring and predictive analysis. Li and Sun 
(2023) showed that the integration of these technologies 
improves decision-making and process efficiency in refinery 
operations, facilitating the development of more intelligent 
and responsive systems [15]. 

Soft sensors, driven by advancements in artificial 
intelligence and machine learning, signify a significant 
advancement in CDU process management [9], [16]. They 
provide real-time surveillance, anticipatory maintenance, and 
improved operational efficacy. Confronting issues like data 
integrity, openness, and flexibility will be essential for 
optimizing their potential. The amalgamation of soft sensors 
with digital twins underscores their revolutionary influence, 
solidifying their status as a fundamental element of 
innovation in the refining sector.  
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III. DESIGN AND IMPLEMENTATION 
This study utilizes HYSYS's dynamic simulation model, 

which is already under control, to generate data for 
understanding the dynamic behavior of a Crude Distillation 
Unit (CDU) with respect to its molar flow of diesel. Inspired 
by the research in "Development of Soft Sensors for Crude 
Distillation Unit Control" by Mohler et al., we focus on six 
key input variables identified as the most likely to influence 
diesel output: column top temperature, column bottom 
temperature, light gas oil temperature, heavy gas oil 
temperature, pump-around temperature, and pump-around 
flow rate.  

Each input variable is controlled by a PID controller 
within the HYSYS model. By implementing step changes in 
the setpoints of these PID controllers, we simulate 
disturbances and observe the resulting dynamic response of 
the CDU's molar flow of diesel. This approach generates 
valuable time-series data, capturing how the CDU behaves 
under varying operating conditions triggered by changes in 
these critical input variables. Analyzing this data will be 
instrumental in gaining insights into the dynamic relationship 
between these key factors and the molar flow of diesel, paving 
the way for potential future control strategy improvements.  

As the first step, I selected relevant data from the plant 
database, which was obtained through dynamic simulations in 
Aspen HYSYS. There are six input variables chosen to 
analyze their effect on the diesel composition over time: 
column top temperature, kerosene temperature, diesel 
temperature, diesel pump-around temperature, diesel pump-
around flow rate, and column bottom temperature. The diesel 
molar flow (composition) served as the output variable. To 
investigate these relationships, seven PID controllers were 
implemented in HYSYS. Six controllers manipulated the 
input variables, while the final one regulated the diesel molar 
flow, as shown in Fig. 1. The simulation of the whole plant is 
shown in Fig. 2.  

The first PID controller, FIC-102, is developed to maintain 
the desired molar flow rate of the diesel product. On the 
Connections tab in Fi, the process variable (PV) was defined 
in the first. This variable represents the actual diesel molar 
flow measured by the plant, which FIC102 will continuously 
monitor and attempt to regulate at the setpoint. Second, the 
output target object (OT) was designated. This signifies the 
element the controller will adjust to influence the process 
variable. In this case, FIC-102 manipulates the actuator 
position of valve VLV-100 to control the diesel molar flow.  

 
Fig. 1. The simulate process flow diagram of the CDU plant 

 

 

Fig. 2. Connection’s tab of FIC-102 controller   

 
Fig. 3. Simulation of the whole plant 

Next, on the Parameters tab, as in Fig. 4, operational 
parameters for FIC-102 were specified. The action mode was 
set to "Direct", indicating a proportional relationship between 
the controller output and the valve position. Additionally, the 
setpoint, the desired diesel molar flow value, was defined 
along with the minimum and maximum acceptable values for 
the process variable. Finally, tuning parameters, which 
influence the controller's responsiveness and stability, are 
established based on process knowledge and engineering 
judgment. 

 

Fig. 4. Parameter’s tab of FIC-102 controller  
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Once configured, the controller was activated by switching 
its mode to "Auto" or "Man". The plant is initially operated in 
manual mode to observe the impact of the input variables on 
the diesel output. However, to gather data for analysis, model 
testing was conducted using FIC-102. This testing process 
involved defining several parameters. A step change is 
introduced to have variations in the setpoint. The signal 
variation amplitude was determined based on the magnitude 
of this variation. The time interval was specified to produce 
the wanted frequency of the data points to be produced. The 
testing time length is defined to identify the total duration of 
the model test. 

After setting these parameters, the simulation was run for 
six hours. The test results were exported to Excel. This data is 
used to build and train the soft sensor model. The plot of the 
data of the bottom temperature in a time series plot is shown 
in Fig. 6. In addition, the time series plot of the Diesel Molar 
Flow is also shown in Fig. 6. As there is some instability in 
the first readings produced, this will not be used in the training 
process, as it can potentially cause problems with the model if 
included in the training data. Hence, this data is removed to 
avoid building an inefficient model.  

 
Fig. 5. Model testing tab of FIC-102 controller  

A. Data Analysis  

A correlation matrix is a fundamental statistical tool that 
provides insights into the relationships between variables in a 
dataset. It consists of a square matrix where each cell 
represents the correlation coefficient between two variables. 
Correlation coefficients measure the strength and direction of 
the linear association between variables, ranging from -1 to 1. 
A value of 1 indicates a perfect positive correlation, 0 
represents no correlation, and -1 indicates a perfect negative 
correlation, whereas the red colors denote a positive 
correlation, and the blue represents a negative correlation 
shown in Fig. 8.  
 

 
Fig. 6. Time series plot of the bottom temperature 

 

Fig. 7. Time Series Plot of the Diesel molar flow rate 

 
Fig. 8. Heat map of the correlation matrix  
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By examining the correlation matrix, researchers and 
analysts can identify patterns, determine the strength of 
relationships, and understand the dependencies between 
variables. This information is crucial for various data analysis 
tasks, such as identifying key factors, exploring 
multicollinearity, selecting variables for models, and gaining 
insights into the dataset's underlying structure. The correlation 
matrix is a powerful tool that aids in summarizing and 
visualizing the relationships between variables, providing a 
foundation for further analysis and interpretation. 

The correlation matrix provided shows the correlation 
coefficients between the output variable output diesel molar 
flow and the input variables column top temperature, kerosene 
temperature, diesel temperature, diesel pump-around 
temperature, diesel pump-around flow rate, and column 
bottom temperature. The correlation coefficient between FIC-
102 and itself shows the value of 1, as it represents the 
correlation of the variable with itself, which is perfect positive 
correlation.  

Looking at the correlation coefficients, it is observed that 
diesel molar flow (FIC-102) has a weak positive correlation 
with TIC-102 (0.3063), while TIC-103 (0.3784) has the 
strongest correlation with the output, indicating that as the 
input variable increases, FIC-102 tends to slightly increase. 
On the other hand, FIC-102 has a weak negative correlation 
with TIC-105 (0.1284), TIC-101 (-0.1669), and FIC-101 (-
0.0914), implying that as these variables increase, FIC-102 
tends to decrease slightly.  

There are some correlations between the input variables 
that are worth noting. As we can see,  

TIC-102 and TIC-105 exhibit a strong negative correlation 
(-0.6196), while TIC-104 and TIC101 show a strong negative 
correlation (-0.6514). These high-magnitude correlations 
suggest the presence of collinearity between these pairs of 
variables. The cross-relation of bottom temperature and diesel 
molar flow is shown in Fig. 9.  

Cross-correlation analysis is also a valuable tool for 
investigating the relationship between two time series data 
sets, particularly in how changes in one variable might 
influence another with a possible time lag. In the simulated 
case, the cross-correlation is used to analyze the relationship 
between the manipulated operating variables (such as column 
top temperature) and the diesel molar flow throughout the 
simulation. This will help in identifying how adjustments to 
these operating conditions might impact the diesel production 
over time. By observing the shift (time lag) at which the 
correlation between variables peaks, one can gain insights into 
the cause-and-effect relationships within the process.  

In the relationship between two time series (x(t) and y(t)), 
the series may be related to past lags of the x-series. The 
sample cross-correlation function (CCF) is helpful for 
identifying lags of the x-variable that might be useful 
predictors of y(t).  

x-variable(s) will be set to be the leading variable of the y-
variable to predict future values of y. Thus, one will usually 
be looking at what’s happening at the negative values of the 
cross-correlation plot as shown in Fig. 8.  

In Fig. 10, the cross-correlation (CC) plot will be used to 
determine the time lags that have strong correlations with 
future y values, and these lagged x variables will be included 
with the input data to build the machine learning models. 

However, adding too much data will further complicate the 
model, so that’s why only the three most significant 
correlations are going to be included.  

B. Model Development  

 The data is initially generated in HYSYS and 
subsequently employed in the development of three distinct 
varieties of time series models in MATLAB. The procedure 
commences with two linear models, TSMLR and TSPLS, and 
culminates with the nonlinear TSNN model. The results of 
each model are analyzed to ascertain which one possesses the 
most predictive capacity. Consequently, these models are 
implemented to forecast the composition of diesel.  

Commencing with the TSMLR model, the lagged variant 
of the original data was implemented to improve the precision 
of our model. Our investigation subsequently included the k-
1 lag, k-2 lag, and k-3 lag as predictors, which were identified 
through cross-correlation. The data was partitioned into a 
training set, which contains 70% of the original dataset for 
coefficient estimation, and a testing set, which contains the 
remaining 30% to assess the model's performance in order to 
ensure the model's resilience. This allocation enables us to 
assess the efficacy of our model on data that is both novel and 
previously unexplored. The "regress()" function in MATLAB 
is employed to develop the prediction model, which is based 
on sophisticated regression methodologies.  

Related to TSPLS reflecting the time series modeling, 
lagged duplicates of the original data were implemented as 
predictors. To identify potential temporal correlations in the 
data, cross-correlation analysis was implemented by selecting 
delays of k-1, k-2, and k-3. The data was subsequently divided 
into training (70%) and assessment (30%) sets. The 
relationship between the input variables and the objective 
variable was modeled using partial least squares (PLS) 
regression using the "plsregress" function in MATLAB. 
Twenty-four latent variables were chosen within the PLS 
framework to accurately represent the fundamental structure 
of the data.  

The TSNN architecture was generated using the "ntstool" 
program in MATLAB. An iterative approach is employed to 
determine the optimal network architecture. A fundamental 
architecture is developed with a single concealed layer and six 
neurons, which is equivalent to the number of input variables. 
Consequently, the predictive efficacy was improved by 
increasing the number of neurons. The final network consisted 
of a single concealed layer that contained ten neurons. This 
methodology incorporated a three-second time delay as a 
conspicuous characteristic. This enabled the network to 
encode temporal relationships by learning from both the 
current input and historical values in the time series. The 
concealed layer implemented the "tanh" activation function to 
adapt to modeling non-linear correlations in the data. To 
generate continuous output values that are pertinent to 
regression tasks, the linear activation function was employed 
in the output layer. The "Levenberg-Marquardt" method, 
which is widely recognized for its efficacy, was employed to 
train the network. To mitigate overfitting, a deliberate data 
partitioning strategy was implemented: 70% of the data was 
allocated for training, 10% for validation during the training 
process to assess performance, and the remaining 20% was 
reserved for final testing and assessment. 
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Fig. 9. Cross-correlation of bottom temperature TIC-103 and diesel molar 
flow 

 

Fig. 10. CC plot of bottom temperature and diesel molar flow 

The objective of controlling the fractionator is to maintain 
the desired values for the endpoints of the top-draw product 
(y1), side-draw product (y2), and bottom reflux temperature 
(y7). This is achieved by manipulating the flow rates of the 
top draw (u1), side draw (u2), and the heat transfer rate of the 
bottom reflux (u3). The heat transfer rate (u3) is further 
adjusted using a control loop that utilizes the hot steam flow 
rate as a control variable. Additionally, there are two measured 
disturbances in the system: the heat transfer rate of the upper 
reflux (l1) and the intermediate reflux (l2). These flows 
remove heat from the system and are subsequently reboiled in 
other sections of the plant. 

TABLE I.  STATISTICAL PARAMETERS OF TSMLR MODEL 

Parameters 
R2 F-test p-value RMSE 

0.7058 6.75 0.0000 11.2509 

 

 
Fig. 11. TSNN architecture  

 
Fig. 12. Scatter plot to TSMLR model 

IV. RESULTS AND DISCUSSIONS 

A. TSMLR model development results 

Based on the analysis of the linear model, Table I presents 
the statistical parameters. The coefficient of determination 
(R2) value of 0.7058 indicates a relatively good level of 
explained variability in the response variable by the 
predictors. Although not exceptionally high, it suggests that 
the model captures a significant portion of the data's variation. 
The F-test yielded a significant F-value of 6.75 (p-value = 
0.0000), indicating a rejection of the null hypothesis of no 
linear dependence; in other words, there is no autocorrelation 
of error relation. This confirms the presence of a relationship 
between the predictors and the response variable. It is worth 
noting that the Root Mean Squared Error (RMSE) of 11.2509 
represents the average deviation of the model's predictions 
from the actual values, suggesting an acceptable level of 
accuracy. Overall, while the model performs well, there is 
room for improvement in terms of capturing more of the 
variability and reducing prediction errors. 

The time series plot shows in Fig. 12 and Fig. 13 that the 
model’s predictions (orange line) generally follow the trend of 
the actual values (blue line). However, there are some 
deviations between the two lines. This indicates that the 
model’s predictions are not perfectly accurate, but they are on 
the right track. 
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Fig. 13. TSMLR model predications vs. actual data 

B. TSPLS model development results 

The Time Series Partial Least Square (TSPLS) model 
yielded highly promising results, as indicated by the statistical 
parameters presented in Table II. The correlation coefficient 
(R) between the predicted and actual values was found to be 
0.90993, suggesting a strong positive linear relationship. This 
implies that the TSPLS model effectively captured the 
underlying patterns and trends present in the time series data. 
The coefficient of determination (R-squared or R2) was 
calculated to be 0.82797, indicating that approximately 82.8% 
of the variance in the response variable could be explained by 
the predictors included in the model. This demonstrates the 
model's ability to effectively explain and predict the observed 
outcomes. The Root Mean Squared Error (RMSE) was 
determined to be 8.7786, which represents the average 
deviation between the predicted and actual values. A lower 
RMSE value signifies a higher level of accuracy, suggesting 
that the TSPLS model exhibited satisfactory predictive 
performance. Additionally, an F-test was conducted, resulting 
in an F-value of 7.2193 and a corresponding p-value of 
6.5281e-14. The significant F-test indicates that the predictors 
included in the model collectively have a significant impact 
on predicting the response variable. In summary, the TSPLS 
model demonstrated strong predictive power, capturing the 
underlying patterns in the time series data with high accuracy. 

From Fig. 14 and Fig. 15, it can be observed that the 
predicted values closely align with the actual values. This 
alignment indicates that the TSPLS model has a good level of 
accuracy in forecasting and analyzing the time series data. The 
proximity of the actual and predicted lines suggests that the 
model effectively captures the trends and fluctuations in the 
data.  

TABLE II.  STATISTICAL PARAMETERS OF TSPLS MODEL 

Parameters 
R2 F-test p-value RMSE 

0.82797  7.2193  6.5281e-14  8.7786  

 

 
Fig. 14. Scatter plot to TSPLS model 

 
Fig. 15. TSPLS model predictions vs. actual data 

C. TSNN model development results 

The Time Series Neural Network (TSNN) emerged as the 
top performer among the models evaluated, achieving the 
lowest Root Mean Squared Error (RMSE) and highest R-
squared values across all datasets. As summarized in Table III, 
it achieved the lowest Root Mean Squared Error (RMSE) of 
0.1659 during training, indicating high accuracy in estimating 
product composition in the Crude Distillation Unit (CDU). 
Furthermore, TSNN exhibited impressive correlation 
coefficients, with an R-value of 0.9995 during training and an 
R2 value of 0.9997, indicating a strong linear relationship 
between the predicted and actual values. These results were 
further validated during the validation and test stages, where 
TSNN achieved RMSE values of 0.5245 and 0.8008, 
respectively, as well as high R and R-squared values of 
0.9982, 0.9991 and 0.9968, 0.9984, respectively.  

Further analysis of the results are generated as shown in 
Fig. 16 and Fig. 17. Fig. 16 illustrates the histogram of target-
output errors with 20 bins. Analyzing the plot, this study notes 
that errors fall within a very small value of 0.007254. All the 
error training points are close to this point. Consequently, the 
error histogram in this context emphasizes extremely good 
outcomes.  
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TABLE III.  STATISTICAL PARAMETERS OF TSNN MODEL 

Testing 
Parameters 

RMSE  R  R2  
Training  0.1659  0.9995  0.9997  

Validation  0.5245  0.9982  0.9991  

Test  0.8006  0.9968  0.9984  

 

The performance plotted in Fig. 17 shows iterations that 
the process of training has been done. It specifies how much 
the final error and gradient are. The training process ended at 
the 53rd iteration, where it is not the best choice for a trained 
network. The algorithm chooses the 47th iteration because it 
has a less valid error in comparison to the training error. It 
means that, by continuing the process, the iteration may have 
a performance for training data, but this is not done to prevent 
overfitting causing lower performance. The minimum mean 
squared error (MSE) is 0.52451 at epoch 74. 

This study uses the error autocorrelation function to 
examine how the predicting errors are interconnected in time 
to verify the network’s performance. In this case, Fig. 18 
reveals a single nonzero value at zero lag, representing the 
mean square error, which is approximately 0.85, indicating a 
high level of accuracy. Apart from the zero-lag correlation, 
most of the predicting errors fit inside the confidence limit 
around zero, confirming the efficiency of the predicting 
approach.  

 
Fig. 16. Error histogram with 20 bins 

 

 
Fig. 17. The best performance of training, testing, and validation using 
TSNN  

 
Fig. 18. Autocorrelation of error  

Fig. 19 depicts the model's performance in predicting 
diesel output. A visual comparison between the model's 
predictions (outputs) and the actual measured diesel 
production data (targets) is presented as a time series plot. This 
plot allows us to observe the response of the neural network, 
comparing the predicted values with the actual values over 
time. Additionally, a plot of the prediction errors (the 
difference between predicted and actual values) is included. 
The model successfully captures the overall trend of diesel 
production, demonstrating its ability to represent the target 
behavior. Furthermore, most of the prediction errors fall 
within a range of less than -5 to 5, indicating a high accuracy.  

The time series neural network continued to showcase its 
exceptional performance, achieving impressive outcomes 
against additional tests. Table IV presents the results obtained, 
where it achieved an RMSE value of 0.1933, indicating a high 
level of accuracy in estimating product composition. 
Moreover, a high R-squared value of 0.9995 is achieved, 
reflecting the accuracy and reliability of TSNN in predicting 
product composition. These findings reinforce the robustness 
and effectiveness of the TSNN model in real-world scenarios 
and solidify its position as the top performer among the 
evaluated models for arterial intelligence.  

 

 
Fig. 19. Time series response plot of target series 
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TABLE IV.  ADDITIONAL TEST STATISTICAL PARAMETERS OF TSNN 
MODEL 

Testing 
Parameters 

RMSE  R  R2  
Additional test  0.1933  0.9990  0.9995  

 

D. Real-time soft sensing implementation 

The implementation of the TSNN model as a real-time soft 
sensor in Aspen HYSYS was done using the three different 
models, TSMLR, TSPLS, and TSNN. By seamlessly 
integrating the model into the simulation environment, the 
continuous estimation of the properties of CDU products was 
enabled based on live measurements of key input variables. 
This integration was made possible through a custom 
MATLAB-HYSYS interface code, which acts as a 
communication bridge between the platforms.  

To facilitate this integration, the comprehensive 
MATLAB-HYSYS interface code allows for real-time data 
exchange and interaction between the soft sensor model in 
MATLAB and the simulation plant in HYSYS, which is 
validated. With the integration in place, the soft sensor now 
receives real-time input data from HYSYS, enabling it to 
make accurate estimations of the diesel molar flow.  

Fig. 20 demonstrates the prediction accuracy of the real-
time soft sensor. where the predicted values closely match the 
actual values, indicating the model's exceptional accuracy in 
real-time forecasting. The near-perfect proximity of the lines 
suggests that the soft sensor effectively captures the trends and 
dynamic fluctuations observed in the direct measurement data.  

Table V shows the RMSE and R values for the three 
different models. The performance of the soft sensors was best 
with the TSNN model, TSPLS, and TSMLR, respectively. 
The real-time soft sensing was achievable by all different 
methods; however, with variable accuracy relying on the 
developed model. This is in agreement with the visual results 
in Fig. 20.  

 

 
Fig. 20. Real-time soft sensor prediction based on live measurements of 
input variables. 

 

 

TABLE V.  PERFORMANCE COMPARISON OF SOFT SENSOR MODELS 

Model 
Parameters 

RMSE  R  

TSMLR 11.2509  0.7058  

TSPLS 8.7786  0.82797  

TSNN 0.8006  0.9968  

 

V. CONCLUSIONS 
The paper sought to enhance product composition 

monitoring in crude oil distillation units (CDUs) by the 
creation of a real-time soft sensor for estimating distillation 
endpoints. Conventional approaches are expensive, 
ineffective, and devoid of internet metrics. The study 
effectively developed a computational model to forecast 
distillation endpoints in real-time utilizing diverse machine 
learning methods. Dynamic process data was produced from 
an Aspen HYSYS simulation, thereafter preprocessed and 
analyzed to ascertain input variables and identify outliers or 
absent values.  

Three soft sensor models were created employing distinct 
time-series methodologies: Time Series Multi Linear 
Regression (TSMLR), Time Series Partial Least Squares 
(TSPLS), and Time Series Neural Network (TSNN). A 
systematic escalation in model complexity was implemented, 
with each successive model enhancing the preceding one. This 
methodology facilitated a systematic assessment and 
comparison of model efficacy. The TSMLR model 
established a preliminary baseline but demonstrated restricted 
accuracy, with an RMSE of 11.2509. The TSPLS method 
enhanced this with an RMSE of 8.7786 by identifying 
nonlinear interactions via latent variables. The TSNN model 
yielded the most favorable outcomes, with an RMSE of 
0.8006 and an R-squared value of 0.9968 during validation 
with previously unexamined test data. The optimized TSNN 
soft sensor was subsequently installed in the Aspen HYSYS 
environment to illustrate its capability for continuous live 
estimates of the distillation endpoint. The successful 
implementation of the soft sensor was achieved by providing 
continuous and reliable estimations of product properties, 
which would support monitoring, process control, stability 
enhancement, decision-making, and quality control.  
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