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Abstract—In the last two decades, a spectacular development
in the superconducting qubits has been accomplished experimen-
tally as well as theoretically. The main reason for that is the real-
ization that superconducting qubits can play a crucial role in the
emergent field of quantum information processing and quantum
computing. The interaction of superconducting qubits with the
quantized electromagnetic field leads to make the circuit quantum
electrodynamics, inspired by cavity quantum electrodynamics.
The field of superconducting qubits and circuit QED is fast grow-
ing and branching to diverse applications in multidisciplinary
fields. This makes it harder for first-time readers to follow-up.
Therefore, this article is targeting to introduce in an intuitive way
the topic of superconducting qubit and circuit QED by giving all
the mathematical background, Lagrangian formalism for electric
circuits, interaction Hamiltonian, and contextual physical inter-
pretation essential to anew scientists and engineers planning to be
specialized in this field as well as portraying a wide vantage for
higher studies through the suggested recommendation resulted
from the simulated examples and written code based on Python
packages and Qiskit software. In this article, the superconducting
qubits, transmon and fluxonium, are reviewed after introducing
the abstract definition of a quantum bit. Moreover, light-matter
interaction in fluxonium qubit and quantization of transmission
line resonator are discussed briefly. Some of the simulated systems
such as the energy levels of fluxonium as a function of offset flux
are presented. Finally, applications of superconducting qubits in
quantum computing and other fields such as quantum transistors,
quantum machines and metamaterials are discussed.

Index Terms—Superconducting qubits, circuit QED, quantum
logic gate, fluxonium, transmon.

I. INTRODUCTION

Quantum computing is about to revolutionize the technol-
ogy we have today. The aim of this article is to draw the
roadmap of quantum computing. Starting from the history
of implementing quantum systems to do computing, going
through the abstract definition of qubits as information units.
Embracing the physical realizations of qubits and explaining
the importance and novelty of superconducting qubits as a
realization of qubits and as an important field of physics that
has applications in science and engineering.

In section I, we briefly review the history behind the idea of
quantum computing, then followed by laying the foundations
of the abstract definition of qubit. In section II, we state what
the qubits physically are and why choosing superconducting
qubits among the others. The mathematical tools and the phys-
ical models for studying superconducting qubits are discussed

in detail in section III. Section IV reviews the fundamental and
most well-known superconducting qubit models by explaining
their circuit design and their energies. In section V, circuit
QED is introduced and how this field represents the light-
matter interaction in superconducting qubits. Lastly, section
VI, discusses the applications of superconducting qubits in the
computing thoroughly and other scientific applications briefly.

A. Historical Review

In 1980s, the American theoretical physicist, Richard Feyn-
man, introduced the idea of quantum computing in his lectures
”Potential advantages of computing with quantum systems”.
Few years later, the British physicist, David Deutsch, proposed
the idea of a universal quantum computer [1]. After that,
several contributions developed quantum algorithms that tackle
issues like factorization [2, 3], searching in databases [4] and
simulations. However, quantum computers aim to overcome
the classical computers reaching the quantum supremacy.

B. From Classical Bit to Quantum Bit

Let’s start first by defining the so-called term bit. The
binary digit, or bit, is defined as the smallest unit of classical
information. That means it quantifies the information capacity
of a two-level system [5]. Abstractly speaking, any thing with
two distinct values could be represented logically as a classical
bit (e.g., coins (head/tails), electric switch (on/off), etc.).

The bits are used to store the encoded information, manip-
ulating these bits is done by logic gates. By logic gates, all
computations are performed. There are single-bit gates (e.g.
NOT gate) and two-bit gates (e.g. AND gate, OR gate, XOR
gate, etc.) that can take 2 input bits and give 1 output bit; see
Fig. 1a. The gates NOT, AND, OR perform a universal gate
set1.

We have explained earlier what the bits are and how to
manipulate them with logic gates. But what are these gates?
One of the easiest ways to enact them is by electric circuits.
If we represent the bit by a light bulb, it could be either on
or off, the gates could be represented by mechanical switches.
Fig. 1b and 1c show the electrical circuit representation of

1A universal gate set is a set of gates that span all possible logic operations
in the truth table. It is one of the requirements to make a quantum computer,
see subsection VI-A1.
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(a) Logic gates

A B

(b) AND gate

A B

(c) OR gate

Fig. 1: (a) Logic gates and their truth table (From left to right, the gates are: AND, OR, XOR and NOT. You can see that
NOT is a single-bit gate and the rest are two-bits gates). The circuit representation of (b) AND (c) OR logic gates.

AND and OR gates. These are very simple examples of
realizations of logic gates for the sake of explaining the
principle. Nevertheless, more complicated realizations are used
in daily life such as transistor or diode logic gates.

The quantum bit or qubit is similar to the classical bit that
it has two values, either 0 or 1. But in contrast to classical
bits, qubits inherit quantum-mechanical properties such as
superposition and entanglement.

Superposition: The state of the qubit 0 and 1 are represented
in Dirac notation (bra-ket notation) as: |1⟩ and |0⟩, or their
superposition:

|ψ⟩ = α|0⟩+ β|1⟩ (1)

Where α, β ∈ C. After the qubit is measured, the probability
to be in the |0⟩ state is |α|2 and |β|2 for state |1⟩. The sum
of the probabilities should equal to 1:

|α|2 + |β|2 = 1 (2)

These states - |0⟩ and |1⟩ - can be represented as the poles
of sphere called Bloch sphere. Bloch sphere is a sphere with
unitary radius and states |0⟩ and |1⟩ as north and south poles,
respectively. The advantage of Bloch sphere is that it can
always represent the qubit’s state, i.e. any point on the sphere
could represent a valid superposition state of the qubit.

Entanglement: When dealing with multiple qubits, a quan-
tum mechanical property could be exploited, that cannot be
done on classical bits, it is entanglement. To say, entanglement
means that the state of a qubit is not independent of the other
entangled qubit. Let us define entangled states using the bra-
ket notation. When we have multiple qubits, each of them has
its own states, their state together are the tensor product of
them:

|ψ1⟩ ⊗ |ψ2⟩ (3)

For example, if |ψ1⟩ = |0⟩ and |ψ2⟩ = |1⟩, then their tensor
product, in a compressed form, is |01⟩. Let us do another
example, if:

|ψ1⟩ =
1

2
(|0⟩+

√
3 |1⟩), |ψ2⟩ =

1√
2
(|0⟩ − |1⟩)

Then their tensor product is:

|ψ1⟩ ⊗ |ψ2⟩ =
1

2
√
2
(|00⟩ − |01⟩+

√
3 |10⟩ −

√
3 |11⟩) (4)

One important thing on this product is that we can write
it back as a tensor product of two qubits, i.e. factorizing it.
The states of multiple qubits that cannot be factorized are
the entangled states. Here are some states that cannot be
factorized, implied that they are entangled:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (5)

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩) (6)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩) (7)

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩) (8)

These are the so-called Bell states. In subsection VI-A2, we
are going to show an example of how to create entanglement
using quantum logic gates.

However, if we perform measurement on a single qubit in
a product state, it does not perturb the state of the other qubit.
For example, if we perform measurement on |ψ1⟩, we get 25%
for being in state |0⟩ and 75% for being in state |1⟩. So, if we
measure |ψ1⟩ in the product state (4), we get:∣∣∣∣ 1

2
√
2

∣∣∣∣2 + ∣∣∣∣ −1

2
√
2

∣∣∣∣2 =
1

8
+

1

8
= 0.25

∣∣∣∣∣
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3

2
√
2

∣∣∣∣∣
2

+

∣∣∣∣∣−
√
3

2
√
2
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=
3
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+

3

8
= 0.75
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Which is the same result. As mentioned earlier, the entangled
states are not independent of each other. So, if we measure a
single qubit in entangled state with another qubit, for sure, it
would affect the state of the latter qubit. Meaning that you can
tell what is the state of the second qubit based on the state of
the first qubit. In state |Φ+⟩ if we perform measurement on
the left qubit, it has 50-50 probability of being in state |0⟩ or
|1⟩. After measurement, if the left qubit is found in state |0⟩
it directly implies that the right qubit is definitely in state |0⟩.
This entangled state is called maximally entangled state. The
Bell states are maximally entangled states.

If a measurement is performed on a qubit in an entangled
state with other qubits, and does not determine the state of
other qubits. Meaning that you can not tell the state of the
second qubit definitely based on the state of the first qubit.
This entangled state is called partially entangled state.

II. PHYSICAL REALIZATION OF QUBITS

The abstract definition of the qubit as an information bit
is explained. Next, the physical realization of qubits. Here,
physical realization means the actual implementation of the
abstract definition. So, physical realization of qubit means the
qubit in real life not abstraction.

Many companies invest in quantum computing and imple-
ment different realizations of superconducting qubits; for ex-
ample, IonQ with trapped ions [6], Intel with superconducting
and semiconductor spin qubits [7]. But most of the companies
are developing and investing in superconducting qubits such
as IBM [8], Google [9], and Amazon [10].

A. Other physical realization of qubits

To realize a physical qubit, any quantum system with two
distinct states, or that could be treated in certain conditions
as a two-level system, can be used as a qubit. There are
different examples that are investigated and explored for this
purpose: Photons, trapped ions, cold atoms, nucleus spin
by nuclear magnetic resonance (NMR), quantum dots, solid-
state qubits, and last but not least, superconducting qubits.
The aforementioned examples are not an exhaustive list, as
there are additional unique qubit realizations currently under
investigation.

Here are some physical qubits, that have been developed in
the last two decades in more details:

Photons: The polarization state of the photon is a two-
level system. It is either horizontally, vertically polarized or
the superposition between them. Manipulating and controlling
the photons is done by using linear and nonlinear optical
components. The field of controlling the state of photons is
called Integrated Quantum Photonics, see [11].

Trapped Ions: Trapped-ion qubits exploit the energy levels
of trapped ions in radio frequency traps. Trapped-ion qubits
are one of the promising qubits that meet DiVincenzo criteria,
see subsection VI-A1.

Quantum Dots: The spin of electrons that are confined
in the quantum dot is considered as a qubit. Because the
electron’s spin have two distinct value; either 1/2 or −1/2.

B. Choosing superconducting qubits in this article

Superconducting qubits are chosen in this article for sev-
eral reasons. However, a common point between defining
the binary states of trapped-ion qubits and superconducting
qubits that are both based on choosing two-energy levels and
ignoring all other levels. Although, a major difference between
superconducting qubits and all other physical realizations is
their quantum behavior.

Quantum phenomena are found in microscopic particles
(e.g., atoms, electrons, etc.). Occasionally, it is not practical
to use small particles as physical qubits. In contrast to the
previous physical qubits, the superconducting qubits have a
macroscopic quantum system, instead of microscopic. And a
quantum behavior on a macroscopic scale would be much pre-
ferred. Because superconductors could maintain macroscopic
quantum behavior, this opens a new area to study supercon-
ductivity in the field of qubits and quantum computing.

In addition to the macroscopic quantum behavior, supercon-
ducting qubits have higher designability than others. This will
be clear when representing different designs of superconduct-
ing qubits in section IV. Also, they are easy to couple and to
control by microwaves. Moreover, they are more scalable than
others.

III. CIRCUIT REPRESENTATION

Earlier in the previous sections, we have explained what
is the abstract definition of the qubit and how it represents
the binary data differently from classical bits by utilizing
the quantum mechanical behavior of the system. Then, the
realization of the qubit can be done using different quantum
systems. However, the realizations (other than superconducting
qubits) have ”relatively” clearer way of representing the binary
levels of the qubit (e.g. photon spin). But in superconducting
qubits are not that straightforward. In order to establish
the two-level system of superconducting qubits, we have to
establish a physical model to study them. Equivalent circuit
model2 is an ideal representation of the electrical properties
of superconductors.

The different types of superconducting qubits, explained in
section IV, have different circuit models. From these models,
we can study the properties of the qubit and define the
binary levels. In order to define the binary levels of the
superconducting qubit, we have to establish a mathematical
method to study the electrical circuit.

Lastly, modeling the superconducting qubits by their equiv-
alent circuit model inherit their classical behavior (i.e. the
continuity of variables). This requires promoting from the
classical model to the quantum model, in subsection III-B.
Then, the system can be studied using the quantum mechanics
tools, and the binary levels are defined.

2Here it is called modeling because the superconductors are not designed
as electrical components. Instead, they are superconducting sheets, or islands,
that exhibit electrical properties best represented by circuit elements.
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Fig. 2: LC oscillator.

A. Lagrangian formalism

Before delving into modeling the qubits using their equiva-
lent circuits, we must lay the foundation for a proper approach
to studying electrical circuits. This concern arises because the
normal way of dealing with electrical circuits will not be
suitable for our purposes. The normal methods of analyzing
circuits, such as Kirchhoff’s rules or any other methods
from circuit analysis textbooks, are not wise choices. The
most important physical quantity to deal with in quantum
mechanics is energy. The variables of interest are not currents
or voltages3. For this reason, it is necessary to deal with these
circuit models in a different way.

Here, the Lagrangian formalism comes into action. It allows
us to deal with our systems directly by energy, and then from
studying these energies we can derive any equation in the
system. For example, the trajectory of a projectile can be
derived from Newton’s equations, which they depend on forces
and accelerations. We can derive the same trajectory of the
projectile by using Lagrangian mechanics, which deals with
energies. Similarly for electrical circuits, by using Lagrangian
formalism to deal with the circuit components by their ener-
gies. By this method, the Lagrangian is defined for the model.
Then, the Hamiltonian is derived from the Lagrangian which
will be quantum mechanically quantized later on.

1) LC Oscillator: The superconducting quantum circuits
are different in size and complexity. To start with, the LC
oscillator, is the simplest and the most important supercon-
ducting circuit model to start with and to use Lagrangian
formalism on. We will go through the Lagrangian formalism
step by step, then the same method can be applied with slight
modifications to different superconducting circuits. Before
starting, choosing the LC oscillator and not any other electrical
circuit is because of its property of conserving energy and
oscillating it between inductive and capacitive components.
Also, the quantum-promoted LC oscillator behaves exactly the
same as the quantum harmonic oscillator which is an important
quantum system that is used in many quantum applications and
as an approximation for complex quantum systems. Not to
forget, LC oscillators are also used as single-mode resonators
to couple qubits, see section V.

3Of course, they are important, but they are not the proper variables to deal
with quantum mechanically

Consider the LC oscillator shown in Fig. 2. Let us break-
down the energy terms in the circuit, we have two energies:
Inductive and capacitive energy. To use the Lagrangian for-
malism, the energies should be defined as kinetic and potential
energy. Here, we will define the kinetic energy and potential
energy as follows4:

T =
1

2
LI2 U =

1

2C
Q2

Then the Lagrangian is:

L = T − U =
1

2
LI2 − 1

2C
Q2 (9)

Writing I as Q̇ makes intuition about the relation of
inductive and capacitive energies with mechanical kinetic and
potential energy:

L =
1

2
LQ̇2 − 1

2C
Q2 (10)

However, the assumption of which term is kinetic energy
and which is potential energy means choosing what is your
dynamical variable. Choosing the capacitive energy as the
potential energy means that the charge Q is the dynamical
variable, and the Lagrangian is a function of Q and Q̇, i.e.,
L(Q, Q̇). Similarly, when choosing the inductive energy as the
potential energy, the flux Φ is our dynamical variable, and the
Lagrangian is L(Φ, Φ̇).

In our notation, we choose to use L(Φ, Φ̇) and the dynam-
ical variable is the flux Φ. So, the Lagrangian now is:

L =
1

2
CΦ̇2 − 1

2L
Φ2 (11)

Here Q = CΦ̇ and Φ = LI . However, Lagrangian for-
malism is an equivalent way to Kirchhoff’s rules in analyzing
circuits. Each method can be used, but one could be a wiser
choice than the other (see Appendix B).

B. Circuit Quantization

The Lagrangian of the LC oscillator is derived and ready to
be used. In quantum mechanics, we do not use the Lagrangian
of the system. Instead, we use the Hamiltonian of the system5.

Taking the Lagrangian L(Φ, Φ̇) from (11), we could apply
Legendre transformation [12] on the Lagrangian of LC oscil-
lator, taking the flux Φ as the coordinate and the charge Q as
the momentum conjugate, to obtain the Hamiltonian:

HLC = QΦ̇− L =
1

2C
Q2 +

1

2L
Φ2 (12)

Here Φ̇ = Q/C. The resonance frequency of the LC
oscillator is ωr = 1/

√
LC. By implementing this in the

Hamiltonian (12):

HLC = QΦ̇− L =
1

2C
Q2 +

1

2
Cω2

rΦ
2 (13)

4It does not matter what to choose as kinetic energy or potential energy.
Both choices are equivalent to each other and give the same behavior.

5The Hamiltonian represents the total energy of the system, while the
Lagrangian not. It is a quantity that represents the difference between the
kinetic and the potential energy
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This draws the analogy between the mechanical harmonic
oscillator (e.g. a mass attached to a spring) and LC oscillator,
where the flux Φ is the position variable of the oscillator,
and Q is the momentum conjugate with mass C and spring
constant 1/L.

By promoting the charge and flux variables to non-
commuting operators using the canonical quantization:[

Φ̂, Q̂
]
= iℏ (14)

Thus, the Hamiltonian operator would be analogous to the
Hamiltonian of quantum harmonic oscillator:

ĤLC =
1

2C
Q̂2 +

1

2
Cω2

r Φ̂
2 (15)

Ladder operators are beneficial algebraic tools in quantum
mechanics to solve Schrödinger equation and determine the
energy levels of the system. Drawing the analogy between the
quantum harmonic oscillator and the LC oscillator6, where
m→ C, x̂→ Φ̂ and p̂→ Q̂. Then the ladder operators would
be:

â† =
1√

2ℏωrC

(
CωrΦ̂ + iQ̂

)
(16)

â =
1√

2ℏωrC

(
CωrΦ̂− iQ̂

)
(17)

Where â† and â are the creation and annihilation operators,
respectively. Here, the creation operator â† creates a photon of
frequency ωr stored in the circuit. By simple arithmetic, the
flux and charge operators can be written in terms of ladder
operators as follows:

Φ̂ = ΦZPF

(
â† + â

)
(18)

Q̂ = iQZPF

(
â† − â

)
(19)

Here ΦZPF =
√
ℏ/2Cωr and QZPF =

√
ℏCωr/2.

Here, ZPF means zero-point fluctuations. That is the standard
deviation of the flux or charge operators (i.e. ΦZPF or QZPF ).
The zero-point fluctuation values give us insights on the
fluctuations of the electric charge and magnetic flux.

By substituting the flux and charge operators to rewrite the
Hamiltonian in ladder operators, we get:

ĤLC = ℏωr

(
â†â+

1

2

)
(20)

In (20) the factor ℏωr has the dimensions of energy, and the
term â†â gives the number of the energy state of the system.
From this, the energy levels are equidistant from each other by
ℏωr. So, this proves that the LC oscillator behaves the same
as the quantum harmonic oscillator.

The equidistant energy levels are the result of the linear
inductive behavior of the LC oscillator. That makes the LC
oscillator a bad choice as a circuit model for qubits, but useful
as a single-mode resonator. This harmonicity should be broken
to have non-equidistant energy levels, see subsection III-D.

6It can be derived solely without using the analogous example of quantum
harmonic oscillator. See [13] for the algebraic way of deriving ladder
operators, section 2.3.1

C. Reduced operators

The ladder operators, in opposite to the flux and charge
operators, are dimensionless operators. Dealing with dimen-
sionless operators has benefits in order to ease the calculations
and decrease the number of factors to control. For this reason,
the flux and charge operators will be reduced to dimensionless
operators.

In superconductors, the charge is quantized in terms of pairs
of electrons called Cooper pairs, see Appendix A. So, the
charge operator will be reduced to:

n̂ ≡ Q̂

2e
(21)

This is the charge number operator, which represents the
number of Cooper pairs, and it is a discrete operator. Next we
have:

φ̂ ≡ 2π

ϕ0
Φ̂ (22)

This is the reduced flux operator or phase operator and
it is a compact operator (i.e. periodic). It’s called phase
operator because it represents the phase of the macroscopic
wavefunction on a superconductor island. And ϕ0 is the
quanta of magnetic flux and called fluxon, and it is equal to
h/2e ≈ 2.067834× 10−15Wb.

Substituting back in the canonical quantization:[
ϕ0
2π
φ̂, 2en̂

]
= iℏ

⇒ [φ̂, n̂] = i (23)

This commutation relation obviously shows the dimen-
sionless nature of the reduced operators. Another important
relation to derive, is the Heisenberg uncertainty principle of
the reduced operators. It could be derived using the generalized
uncertainty principle, as explained in [13]. Thus, the relation
will be:

∆φ∆n ≥ 1

2
(24)

1) LC oscillator: We will start to examine the reduced
operators on the LC oscillator. Let us substitute the reduced
operators in the Hamiltonian (15):

ĤLC =
1

2C
(2en̂)2 +

1

2
C

(
1

LC

)2(
2π

ϕ0
φ̂

)2

⇒ ĤLC = 4EC n̂
2 +

1

2
ELφ̂

2 (25)

Where EC = e2/2C and EL = (ϕ0/2π)
2/L are the capac-

itive and inductive energy, respectively. This brings intuition
about how the dominant energy term affecting the behavior
of the system. These energy factors will assist in defining the
working regime for each qubit as shall be seen later.
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EJ

Fig. 3: The electric symbol for Josephson junction.

CS EJ

Fig. 4: Transmon qubit.

D. Josephson junction

Josephson effect is a macroscopic quantum phenomenon
happens when two superconductors are placed in proximity
with some barrier between them, see Appendix A. The device
that utilizes Josephson effect is called a Josephson junction.
The Josephson junction exhibits a nonlinear inductive behavior
as a function of the magnetic flux. It is defined as follows:

LJ(Φ) =
ϕ0
2πIc

1

cos(2πΦ/ϕ0)
(26)

where Ic is the critical current. Due to the proximity of the
superconductors, there is an intrinsic capacitance between the
two islands. In circuit representation, the Josephson junction is
represented by an ”X” symbol (for the nonlinear inductance)
inscribed inside a square (represent the intrinsic capacitance),
see Fig. 3.

Josephson junction is an essential element in qubits. In order
to use it in analyzing the qubits. We need to find the energy
stored in the Josephson inductance. To do that, we need to
use both Josephson DC and AC effects, see Appendix A, as
follows:

E =

∫
V (t)I(t) dt

=

∫
dΦ(t)

dt
I(t) dt

=

∫
dΦ(t)

dt

(
Ic sin

(
2π

ϕ0
Φ

))
dt

= −ϕ0Ic
2π

cos

(
2π

ϕ0
Φ

)
By writing the energy in terms of reduced quantized phase
variable:

E = −EJ cos φ̂ (27)

Where EJ = ϕ0Ic/2π. This quantity is proportional to the
rate of tunneling of Cooper pairs through the insulator layer,
which is actually because of the current Ic.

This nonlinearity of Josephson junction inductance plays
a crucial role in providing the necessary anharmonicity in
superconducting qubits. Making the anharmonic energy levels
to the qubits, i.e. the energy levels are not equidistant. The

anharmonicity of qubits is a necessary condition to provide
a functional qubit, but not sufficient. Other criteria must be
there to have fully-functioning qubit, see subsection VI-A1.

IV. SUPERCONDUCTING QUBITS

Current models and designs of superconducting qubits are
derived from 3 basic types of qubits [14, 15]: charge-based
qubits, flux-based qubits, and phase-based qubits. These 3
types are classified by the ratio of capacitive energy to
Josephson energy (i.e. EJ/EC). As mentioned in section III,
reduced operators, the charge number operator n̂ and the phase
operator φ̂ are canonically conjugate and they obey Heisenberg
uncertainty principle. So when the capacitive term dominates,
the phase operator has larger quantum fluctuations than charge
number operator, and vice versa. Basically, the basic design of
charge-based qubits depends on the charge number operator n̂
and flux-based qubits depend on the phase operator φ̂. In this
section, we will go through the charge- and flux-based qubits
to introduce the transmon and fluxonium qubits.

A. Charge-based qubits

1) Cooper Pair Box: The Cooper pair box (CPB) is the first
version of charge-based superconducting qubit. It is formed
by connecting two superconducting islands by an insulator,
this is a Josephson junction, see Appendix A. Cooper electron
pairs tunnel from the first island, called the electrode, toward
the second island, called the reservoir, through the insulator
junction. The Hamiltonian of CPB is:

ĤCPB = 4EC(n̂+ ng)
2 − EJ cos φ̂ (28)

Here EC = e2/2(CJ + Cg). The ng is the gate charge
number caused by coupling the Josephson junction to the gate
capacitor, Cg . It is a continuous variable in contrast to the
charge number operator n̂ which is discrete.

2) Transmon: Cooper pair boxes are sensitive to the gate
charge caused by the gate capacitance, and that affects the
energy levels. Hence the transmon qubit is introduced by [16]
to solve this issue and create a more stable energy levels with
less charge sensitivity. The transmon is a Josephson junction,
smaller compared to the Cooper pair box but shunted with a
large capacitance CS to decrease the capacitance energy EC
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Fig. 5: Charge insensitivity of transmon qubit. The larger the
value of EJ/EC the more the energy levels are stable and
insensitive to gate charge. Also, the sensitivity to gate charge
is inevitable in higher energy levels, but in qubits our concern
is on the first two levels.

and by increasing the gate capacitance Cg , as well, see Fig. 4.
So, the dominant term will be the flux term, which will have
less quantum fluctuations. That makes the dominant variable
is the flux Φ.
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Fig. 6: The wavefunctions in base φ for two transmon qubits
with two EJ/EC ratios. The larger the value of EJ/EC the
more valid the approximation in (30) is.

Since the transmon qubit is insensitive to the offset charge
in their operating regime (i.e. large EJ/EC), see Fig. 5, then
we can write the transmon Hamiltonian as:

ĤT = 4EC n̂
2 − EJ cos φ̂ (29)

Here is the capacitance energy EC = e2/2(CJ +Cg+CS).
And the transmon qubit is represented in a superconducting
circuit as shown in Fig. 4.

By approximating the Josephson junction energy term in the
Hamiltonian, by expanding the cosine to:

cos φ̂ = 1− φ̂2

2!
+
φ̂4

4!
+ . . .

Thus, the transmon Hamiltonian, up to the first nonlinear
term, would be:

ĤT = 4EC n̂
2 +

1

2
EJ φ̂

2 − 1

4!
EJ φ̂

4 (30)

Notice here the constant term is dropped because it is a
constant perturbation and just shifts the whole spectrum by
constant amount, i.e. −EJ .
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Fig. 7: The anharmonicity of transmon qubit potential well
compared to the harmonic oscillator (dashed blue). Figure is
adapted from [17].

CS EJ1
EJ2

Φext

Fig. 8: Flux-tunable transmon.

Defining the ladder operators based on the linear terms (the
first two terms) in the transmon Hamiltonian (30), and writing
the reduced operators in terms of them:

φ̂ =
1√
2

(
8EC

EJ

)1/4 (
b̂† + b̂

)
(31)

n̂ =
i√
2

(
EJ

8EC

)1/4 (
b̂† − b̂

)
(32)

Where b̂ and b̂† are the annihilation and creation operators,
respectively. Then the transmon Hamiltonian in ladder opera-
tors is:

ĤT =
√

8ECEJ

(
b̂†b̂+

1

2

)
− EC

12

(
b̂† + b̂

)4
(33)

Fig. 6 (as depicted on the previous page) shows the energy
levels and wavefunctions of two transmon qubits with different
EJ/EC ratios. Notice that the shape of the potential well
shows the validity of the approximation in (30), which is valid
for the transmon regime.

A
r
r
a
y

o
f
J
J

L

EJ

Fig. 9: Fluxonium circuit with array of JJ.

Anharmonicity of Transmon: The anharmonic nature of the
qubit is a vital issue, because the energy spacing is different
for each transition between energy levels. If the energy spacing
is identical for all levels, that means the transitions between
the energy levels would not be distinguishable.

Here in transmon qubit, to show the anharmonicity, the
rotation-wave approximation is applied on the power 4 term
[17], then the approximated Hamiltonian is:

ĤT =
(√

8ECEJ − EC

)(
b̂†b̂+

1

2

)
− EC

2
b̂†b̂†b̂b̂ (34)

Fig. 7 shows the anharmonicity of the transmon qubits
compared to the LC oscillator, in other words, the quantum
harmonic oscillator.

Flux-tunable Transmon: The transmon qubit has a fixed
operating frequency. There is the flux-tunable transmon qubit,
where the frequency of this qubit is tuned by the applied
external flux. Here, the Josephson junction in transmon qubit,
is replaced by a superconducting quantum interference device
(SQUID). Then the Hamiltonian is:

ĤT = 4EC n̂
2 − EJ1 cos φ̂1 − EJ2 cos φ̂2 (35)

Here we have two terms for the Josephson junction, because
the SQUID consists of two Josephson junctions, see Fig. 8.

B. Flux-based qubits

1) Fluxonium: The fluxonium is constructed by shunting
an array of small Josephson junctions to a large Josephson
junction to obtain a large shunted inductance to the Josephson
junction, see Fig. 9.

This is done to make the qubit less sensitive to the offset
flux noise, similar to the motivation for the transmon qubit
to charge noise. The inductive noise comes from the large
shunted inductance that is in proximity to another inductor
with a DC current flowing through making an offset flux. So
the Hamiltonian can be written as:

ĤFluxonium = 4EC(n̂+ ng)
2 − EJ cos φ̂

+
1

2
EL(φ̂+ φg)

2
(36)

Where EL = (ϕ0/2π)
2/L, which is the inductive energy

of the large inductance. It is convenient to perform unitary
transformations [13] on the operators n̂ and φ̂. The unitary

117



15 10 5 0 5 10 15

4

2

0

2

4

6

8

10
|

j(
)|2 ,

  e
ne

rg
y 

[G
H

z]

ex/ 0 = 0.0

(a) φg/2π = 0

15 10 5 0 5 10 15

4

2

0

2

4

6

8

|
j(

)|2 ,
  e

ne
rg

y 
[G

H
z]

ex/ 0 = 0.25

(b) φg/2π = 0.25

15 10 5 0 5 10 15

0

2

4

6

|
j(

)|2 ,
  e

ne
rg

y 
[G

H
z]

ex/ 0 = 0.5

(c) φg/2π = 0.5

Fig. 10: The wavefunctions in base φ for 3 fluxonium qubits
with different offset flux φg . The double well shape changes
depending on the value of the offset flux. The energy levels
of the wavefunctions changes with the offset flux.

transformation is done to get rid off the offset charge and flux
as:

Û = eiφ̂ngeiφgn̂ (37)

Where this transformation when operates on n̂ and φ̂ yields:

Û n̂Û† = n̂− ng (38)

Û φ̂Û† = φ̂− φg (39)

Then the Hamiltonian would be:

ĤFluxonium = 4EC n̂
2 +

1

2
ELφ̂

2 − EJ cos (φ̂− φg) (40)

Here we cannot approximate the cosine term as in (30),
because the ratio EJ/EC is not as large as in the transmon
qubit. So, it must be kept as it is. Now, the potential well is
not a quadratic well. Instead, it is quadratic + cosine, and it
depends on the offset flux. Fig. 10 shows the wavefunctions
of the first 3 energy levels for different offset fluxes. It is
clear that the energy levels are influenced by the offset flux
by noticing the energy difference between the first 3 energy
levels in Fig. 10.

Now, by introducing the ladder operators for the fluxonium
qubit7 in a similar way to transmon qubit:

φ̂ =
1√
2

(
8EC

EL

)1/4 (
b̂† + b̂

)
(41)

n̂ =
i√
2

(
EL

8EC

)1/4 (
b̂† − b̂

)
(42)

C. State-of-art Qubits

Among the years different designs of superconducting
qubits were developed in the field of superconductor qubits,
such as: Unimon [18], cos(2ϕ) qubit [19], Blochnium [20],
Bifluxon qubit [21] and plasmonium qubit [22]. Each of them
has its unique circuit representation, refer to the references for
more details.

V. CIRCUIT QED

A. circuit QED vs. cavity QED

To briefly compare between cavity QED and circuit QED,
cavity QED studies the atoms or ions coupled to electro-
magnetic photons inside a resonant cavity. The property of
this resonant cavity is that it supports only discrete modes of
electromagnetic field. Similarly, circuit QED uses the super-
conducting qubits as artificial atoms coupled to microwave res-
onators. Superconducting qubits are called as artificial atoms
because their energy levels can be changed by manipulating
the values of electrical circuit elements. But circuit QED goes
further beyond that, because it combines the tools of quantum
optics and the physics of superconducting circuits to study
more physics fundamentals that cannot be achieved using real
atoms.

B. Light-matter Interaction in Fluxonium Qubit

It is inevitable to isolate the qubit from the environment.
It should be coupled, intentionally or not, to the environment.
To control the qubit and measure it, it should be coupled by
a coupling mechanism8. In this section, we are coupling the
Fluxonium qubit to a coplanar waveguide resonator.

7Be careful! They have the same notation for transmon’s ladder operator,
but they are defined by using EL instead of EJ .

8There are different kind of coupling mechanisms between qubits, see [23]

118



ar wish

i

ammEIÉ
EEÉ

(a) Transmission line

Ck

x = 0

L0

C0

∆x

Ck

x = d

Φn Φn+1

(b) Telegrapher Model

Fig. 11: Transmission line resonator and telegrapher model.

Commonly in circuit QED, the electric and magnetic field
are confined to 2-dimensional wave guides, called coplanar
waveguide resonator, see Fig. 11a. This coplanar waveguide
resonator acts as a transmission line, and it is modeled by
the telegrapher model [24]. Fig. 11b shows the telegrapher
model for a 1-dimensional transmission line resonator. Notice
that the building blocks of the telegrapher model consist of
series inductance Lo represents the self-inductance of the
superconductor and shunted capacitance Co represents the
capacitance between the two superconductor substrates and
there are no resistive elements because, again, we are dealing
with superconducting circuits.

To study the coupling of fluxonium qubit and coplanar
waveguide resonator, see Fig. 12a (see the figure on the next
page), we have to sum their Hamiltonians. The Hamiltonian
of Fluxonium qubit is already derived earlier. Let us derive
the Hamiltonian of the resonator9.

To start with, from the telegrapher model, it has n terms
of capacitors and inductors. So, the associated capacitive and
inductive energies of the resonator are:

T =
Q2

n

2Co
U =

1

2Lo

(
Φ2

n+1 − Φ2
n

)
Notice that, as before, here the coordinate variable is the

flux. Also, the nth inductive energy is the flux through joint
n, i.e. the difference between the fluxes from the inductors
before and after the point. By the same method of deriving
the Hamiltonian of LC oscillator, we derive the Hamiltonian
of resonator as the summation of all n terms:

H =
N−1∑
n=0

[
1

2Co
Q2

n +
1

2Lo

(
Φ2

n+1 − Φ2
n

)]
(43)

The telegrapher model is a discrete representation of the
resonator. Thus, by going to the continuum limit, we define:

lo ≡ Lo

∆x
co ≡ Co

∆x
Where lo and co are the inductance per unit length and

the capacitance per unit length, respectively. The flux Φn is

9From now, when resonator is mentioned, it means the coplanar waveguide
resonator.

no longer discrete, it becomes a function of position: Φn =
Φ(xn). And the charge Qn is described as Qn = Q′(xn)∆x,
where Q′(xn) is the charge density as a function of position.

Hence, the Hamiltonian in continuum limit would be:

H =
N−1∑
n=0

[
(Q′(xn)∆x)

2

2co∆x
+

(Φ(xn+1)− Φ(xn))
2

2lo∆x

]
(44)

In the limit of ∆x is infinitesimally small. Then, ∆x is
replaced by dx, so the Hamiltonian becomes:

H =

∫ d

0

[
co
2

(
∂Φ

∂t

)2

+
1

2lo

(
∂Φ

∂x

)2
]

︸ ︷︷ ︸
HD

dx (45)

Where we have used:

∂Φ

∂x
= lim

∆x→0

(
Φ(xn+1)− Φ(xn)

∆x

)
The integrand in (45), is called the Hamiltonian density,
HD [25]. Because the flux coordinate variable Φ and the
momentum density conjugate Q′ = co

∂Φ
∂t are field operators

inside the waveguide.
The next step is to integrate the Hamiltonian density. This

cannot be done unless the field flux variable is derived from
the Hamiltonian density. For further details, see Appendix C.
Then, the Hamiltonian of the resonator is:

H =
∞∑

m=0

[
Q2

m

2Cr
+

1

2
Crω

2
mΦ2

m

]
(46)

Where Cr = cod is the total capacitance of the transmission
line resonator. This is the classical Hamiltonian of the res-
onator including all the modes (frequencies) of the resonator.
Unlike the LC oscillator, which contains only a single mode.
The next step is to quantize the Hamiltonian.

1) Quantization of Transmission Line Resonator: Similar
to the LC oscillator discussed in section III, here we have a
summation of LC oscillators with different modes. And each
mode has it’s own operators, so their canonical quantization
is
[
Φ̂m, Q̂m′

]
= iℏδmm′ . Where δmm′ is a Kronecker delta.

119



are

µ iii iii É

(a) A schematic of fluxonium qubit coupled to a transmis-
sion line resonator

Lm
Cm L

EJ

Cg

(b) Single-mode approximation of fluxonium coupled to
resonator

Fig. 12: Coupling Fluxonium qubit to a coplanar waveguide resonator.

Similarly the ladder operators for each mode m are defined
as:

Φ̂m =

√
ℏ

2Crωm

(
â†m + âm

)
(47)

Q̂m = i

√
ℏCrωm

2

(
â†m − âm

)
(48)

Where Cr is the resonator’s capacitance and ωm is the mode
frequency. And â†m and âm are the creation and annihilation
operators for mode m, respectively. Thus, the Hamiltonian in
ladder operators will be:

ĤResonator =

∞∑
m=0

ℏωm

(
â†mâm +

1

2

)
(49)

In other words, the resonator is the sum of infinite quantum
harmonic oscillators of different modes.

2) Interaction Hamiltonian: To find the interaction Hamil-
tonian, we just need to sum both Hamiltonians:

Ĥ = ĤFluxonium + ĤResonator

Then, we have:

Ĥ = 4EC n̂
2 +

1

2
ELφ̂

2 − EJ cos (φ̂− φ̂r)

+
∞∑

m=0

ℏωm

(
â†mâm +

1

2

) (50)

Here φ̂r is not the offset phase as previously, because now
it is coupled to the transmission line. It is rather a continuous
flux offset regarding the coupling. By writing the Hamiltonian
in ladder operators and doing the single-mode approximation:

Ĥ =
√

8ECEL

(
b̂†b̂+

1

2

)
− EJ cos (φ̂− φr)

+ℏωm

(
â†mâm +

1

2

) (51)

By writing the cosine term in exponential form, it is:

−EJ cos (φ̂− φr) = −EJ

2
(exp(i(φ̂− φr)) +H.c.)

Where H.c. means Hermitian conjugate. In order to find the
operator φ̂r we should analyze the fluxonium qubit coupled
to an LC oscillator (because here we applied the single-mode
approximation), see Fig. 12b.

There is a whole journey after coupling the qubit with a
resonator. The next step includes measuring the qubit state
and identify the error in signal and so on. This part is not
covered in this article. These are suggested for further reading
[17, 26].

VI. APPLICATIONS

The superconducting qubits could be applied for different
purposes. The main application and motivation for improving
the superconducting qubits is quantum computing, which is
discussed in the first subsection. In addition to quantum
computing, other applications of superconducting qubits are
discussed briefly in the second subsection.

A. Quantum computing

The ultimate goal of the field of quantum computing is
to make a reliable quantum computer that can do important
computational tasks that cannot be achieved by classical
computers or supercomputers. In this section, we discuss some
related topics to quantum computing.

1) DiVincenzo Criteria: After discussing the superconduct-
ing qubits and briefly reviewing other physical qubits in
sections I and II, how could we have a quantum computer
with these qubits? To answer this, there is a set of physical
requirements to implement a quantum computer10, known as
DiVincenzo criteria [27]. Here they are:

1) A scalable physical system with well-defined qubits.

10This can be applied to all types of qubits; it’s not restricted to supercon-
ducting qubits.
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Fig. 13: Quantum circuits: (a) Hadamard gate, (b) CNOT gate, (c) Toffoli gate; is the controlled-controlled-NOT gate and it’s
a 3-qubit gate and (d) |GHZ⟩ state. The solid dot indicates the controlled qubit and ⊕ indicates the target qubit. Also, ⊕
means the XOR of the controlled and the target qubit.

2) The ability to initialize the qubit to a specific state.
3) Having a long decoherence time T2: where T2 is the

dephasing time of the qubit, and it determines the time
that we can perform quantum logic gates.

4) A universal set of quantum logical gates.
5) The ability to perform a qubit-specific measurement.

And there are two additional requirements for quantum com-
puters to perform quantum communications: resume

1) The ability to interconvert between stationary qubit and
flying qubit.

2) The ability to transmit flying qubits between specified
locations.

Flying Qubit: The flying qubits, contrary to stationary
qubits, transmit information over macroscopic scales and per-
form at room temperature. A flying qubit can be achieved by
initializing a qubit in such a coherent superposition between
the ground and first excited states:

|ψinitial⟩ = α|g⟩+ β|e⟩

After some time, the qubit will spontaneously decay to the
ground state (if it is excited) and into an electromagnetic field
in superposition between the photon’s states |0⟩ and |1⟩. Then
the final state would be a product of the qubit in the ground
state and the photon state in superposition inherited from the
qubit’s initialization:

|ψfinal⟩ = |g⟩|ψphoton⟩ = |g⟩[α|0⟩+ β|1⟩]

2) Quantum Gates and Entanglement: Quantum logic gates
act on one or more qubits to execute quantum computation.
They are the quantum version of classical logic gates, dis-
cussed in section I. But not all quantum gates are the quantum
version of classical logic gates because qubits have intrinsic
properties that are exploited in computations that classical bits
don’t have.

Here are some of these quantum gates: Pauli X gate (or the
quantum version of classical NOT gate), Pauli Y gate, Pauli
Z gate, phase gate (S), Hadamard (H), controlled-NOT gate
(CNOT or CX), SWAP gate, Toffoli gate, etc. Here we are
interested in both Hadamard gate and controlled-NOT gate to
show how to perform a maximally 3-qubit entangled state.

Let’s give a brief description of H and CNOT gates:

• Hadamard (H):
It is a single-qubit gate, which acts on one qubit only. It
turns state |0⟩ into |+⟩ and |1⟩ into |−⟩, i.e.

H|0⟩ = 1√
2
(|0⟩+ |1⟩) ≡ |+⟩

H|1⟩ = 1√
2
(|0⟩ − |1⟩) ≡ |−⟩

• Controlled-NOT (CNOT):
It is, in contrast to Hadamard gate, a two-qubit gate. It
acts on the product state of two qubits by inverting the
right qubit, called target qubit, if the left qubit, called
controlled qubit, is in state |1⟩. That is:

CNOT |00⟩ = |00⟩

CNOT |01⟩ = |01⟩

CNOT |10⟩ = |11⟩

CNOT |11⟩ = |10⟩

This gate inverts the target qubit, which is performing X
gate on the right qubit, that is why it’s called controlled-
NOT gate or controlled-X gate (CX). The output of CNOT
gate has the left qubit the same as the controlled qubit,
while the right qubit becomes the XOR of the inputs (the
controlled and target qubits), see Fig. 1a. Then we can
say that CNOT is the quantum version of classical XOR
gate.

Fig. 13a and 13b shows the Hadamard and CNOT gates in
quantum circuits by using Qiskit software [28].

The maximally entangled 3-qubit state can be obtained
using two different ways:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩)

Or
|W ⟩ = 1√

3
(|001⟩+ |010⟩+ |001⟩)

Here we are going to discuss the process of having |GHZ⟩
state by using Hadamard and CNOT gates [29]. The |GHZ⟩
protocol starts by initializing the three qubits at the ground

121



state, i.e. |000⟩. Then applying Hadamard gate on the first
qubit (q0), i.e.

H|000⟩ = 1√
2
(|000⟩+ |100⟩)

Note that the second (q1) and third (q2) qubits remain in
the ground state. After that applying the CNOT gate on q1
conditioned on q0:

CNOT
1√
2
(|000⟩+ |100⟩) = 1√

2
(|000⟩+ |110⟩)

By applying CNOT again on q2 conditioned on q1:

CNOT
1√
2
(|000⟩+ |110⟩) = 1√

2
(|000⟩+ |111⟩)

Thus, we have |GHZ⟩ state by using Hadamard and CNOT
gates. Fig. 13d (as depicted on the previous page) shows the
quantum circuit for implementing this state.

There is another way to perform the |GHZ⟩ state by using
iSWAP gate discussed in [29]. This is the abstract way to have
maximally entangled 3-qubit states, but we did not discuss
the practical way to do it, to witness it and confirm the
entanglement. In [29], superconducting phase qubits are used
for this purpose.

3) Quantum Measurement: The measurement process of
the qubit’s state is not an easy task. Because the measurement
device can influence the qubit to be coupled with it and hence
give false results. The measurement process in circuit QED
requires a more thorough and detailed investigation, which is
not tackled here in this article.

However, quantum measurements are important and give
another advantage to quantum computation. Well, the way
discussed above to perform computation is based on quantum
gate operations, which is called the quantum circuit model; it
is the quantum version of classical computation. In essence,
quantum measurements offer the so-called measurement-based
quantum computation (MBQC) [30].

B. Other applications

The applications of superconducting qubits are not focused
solely on quantum computing and quantum information pro-
cessing applications. The flexibility in manipulating the energy
states of superconducting qubits enables us to explore novel
quantum systems. Due to this, there are several applications
of superconducting qubits in the fundamentals of physics and
in different physical applications. Here are some of these
applications:

Quantum machines: In 2010, the first quantum machine
was made by coupling a mechanical resonator and a phase
qubit. The importance of quantum machine is to be used in
quantum detectors and to generate quantum states of light [31,
32].

Single qubit lasing: Since superconducting qubits are
considered as artificial atoms because their energy levels are
highly controllable and easy to manipulate. This allows us
to explore further quantum-optics phenomena such as lasing
using superconducting qubits [33, 34].

Quantum transistor: Classical transistors are the building
units of all current technological devices. Generally, classical
transistors work by either passing or blocking the coming
current. Similarly, quantum transistors change the spin state.
In [35], four transmon qubits were used to make a quantum
transistor.

Quantum diode: The phenomenon of preferred direction
of flow in semiconductors was utilized to make the diode.
However, a similar effect occurs in superconducting materials.
Implementing superconducting qubits to make real supercon-
ducting quantum diodes was examined in [36, 37].

Metamaterials: The materials that are engineered and syn-
thesized to have properties are rarely seen in nature are called
metamaterials. Such materials, have numerous applications in
many fields. Superconducting qubits can be used to construct
metamaterials [14].

And many other applications such as the quantum refrigera-
tor [38], which investigates the relationship between quantum
mechanics and thermodynamics. In addition to demonstrating
Berry’s phase [39] and simulating quantum systems [40].

VII. CONCLUSION

In conclusion, quantum computing will play a crucial role in
framing the upcoming technology and pushing the boundaries
of the current knowledge. In this article, the definition of qubit
was revised in details. A brief discussion on the physical
realization of qubits. Followed by a thorough derivation of
the mathematical tools and physical models for studying
superconducting qubits. In section IV, the different designs
of superconducting qubits were reviewed. Circuit QED was
established in section V and fluxonium qubit was coupled
to a coplanar waveguide resonator. Lastly, in section VI,
the applications of superconducting qubits in computation
and information processing were reviewed, and briefly, the
applications in scientific field.

APPENDIX A: SUPERCONDUCTIVITY

In this appendix, we give a brief introduction to supercon-
ductors and their main properties, in addition to explaining
Josephson’s effects. This appendix is based on [41, 42].

A. Electromagnetic View of Superconductivity

1) Zero Resistance: The zero resistance of the supercon-
ductor makes it a dissipation-less medium. In other words,
there is no damping or loss of energy. This is a common prop-
erty between the perfect conductor and the superconductor.

2) Meissner-Ochsenfeld Effect: It is the ability of the su-
perconductor to expel the magnetic field outside it. In contrast
to the zero resistance, this property is unique to superconduc-
tors since they maintain a zero magnetic field inside them.
This is the main difference between normal conductors and
superconductors.
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B. Solid-state View of Superconductivity

In a solid-state view of superconductivity, when specific
conductors are cooled to very low temperatures, called the
critical temperature TC , below which the free electrons are
coming together into pairs, these pairs of electrons are called
Cooper pairs. Even though we do not know the mechanics of
pairing, we know that they are there.

Also, if you have a ring of a superconductor, then the
magnetic flux through this ring is quantized! The single
quantity of magnetic flux is called fluxon ϕ0 and equals to
h/2e, where h is Planck’s constant, and e is the electron’s
charge. The fluxon shows that the fundamental charge in a
superconductor is 2e, so it proves the existence of Cooper
pairs.

C. Josephson Effects

The Josephson junction consists of two superconductors
separated by a thin insulator layer (SIS) or by a non-
superconducting layer (SNS). The Josephson junction shows
two main effects that have important roles and are exploited
by superconducting qubits.

1) DC Josephson Effect: It says: a DC current flows across
the Josephson junction in the absence of the electric or
magnetic field. This current is given by:

I = Ic sin(φL − φR) (52)

Where Ic is the critical current and it’s proportional to the
tunneling rate of Cooper pairs through the junction, (φL−φR)
is the phase difference through the junction’s left and right
sides.

2) AC Josephson Effect: If there is a voltage applied to the
junction, then the current oscillates with time. That is because
the phase difference, i.e. φL −φR, is now depending on time
and proportional to the applied voltage by this relation:

∂(φL − φR)

∂t
= −2eV

ℏ
(53)

Then the oscillating current is:

I = Ic sin (φL − φR − 2eV t/ℏ) (54)

So now the current is not constant, but also changes peri-
odically with time in a the effect of the applied voltage.

APPENDIX B: LAGRANGIAN FORMALISM AND
KIRCHHOFF’S RULES

To show that Lagrangian formalism gives the same results as
Kirchhoff’s rules, we have to derive the equation of motion by
both methods and show that they are the same. The equation of
motion, in our case for electrical circuits, is how the current11

changes with time. In our example circuit, the LC oscillator,
the equation of motion is how the current changes with time
between the elements of inductance L and capacitance C. Note
that there are no resistive elements in the example circuit, since
superconductors have zero resistance, see Appendix A.

11It is not restricted on how current changes with time, but any dynamical
variable in the circuit since they are all related. You can rewrite the equation
of motion in terms of charge or flux.

A. Lagrangian Formalism

Starting with Lagrangian formalism, to derive the equation
of motion of the current, we need to invoke Euler-Lagrange
equation for the dynamical operator Q:

d

dt

(
∂L
∂Q̇

)
=
∂L
∂Q

(55)

Substituting the Lagrangian of the LC oscillator (10), into
the above equation. Then the equation of motion is:

Q̈ = − 1

LC
Q (56)

Similarly for the flux dynamical variable Φ, the correspond-
ing Euler-Lagrange equation is:

d

dt

(
∂L
∂Φ̇

)
=
∂L
∂Φ

(57)

Substituting the Lagrangian in the above equation, getting
the equation of motion for Φ:

Φ̈ = − 1

LC
Φ (58)

As we will show later, solving (58) and (56) would give us
the same equations of motion as Kirchhoff’s rules.

B. Kirchhoff’s Rules

In Kirchhoff’s rules, we start with associating a charge
branch and a flux branch which are defined here as in [43,
44]:

Φi(t) =

∫ t

−∞
Vi(t

′)dt′ (59)

Qi(t) =

∫ t

−∞
Ii(t

′)dt′ (60)

where i = A,B are the branches of the circuit shown in Fig.
2. Alternatively, it is better to write (59) and (60) as: Vi = Φ̇i

and Ii = Q̇i for each branch. We are dealing with Kirchhoff’s
rules (i.e. we are dealing with voltages and currents).

Now, by voltage rule: VA + VB = 0, and the associated
branch fluxes we get12:

−Φ̇A + Φ̇B = 0

⇒ −LİA = Φ̇B (61)

Differentiating (61) with respect to time:

−LÏA = Φ̈B (62)

Note that there is only one independent variable because
Kirchhoff’s rules constrain the degrees of freedom. From
current law IA + IB = 0 we get:

IA + CΦ̈B = 0 (63)

Here IB = Q̇B = d
dt (CΦ̇B) = CΦ̈B . Then,

Φ̈B = −IA
C

(64)

12The sign of fluxes are arbitrary chosen, you can change the sign
convention and you wold get the same result.
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Substituting (64) into (62):

−LÏA − IA
C

= 0

⇒ ÏA = − 1

LC
IA (65)

Here (65) will have the same solution as (56) and (58). Let’s
solve the above equation (65):

IA(t) = IAmax
cos(ωt+ δ) (66)

where ω = 1/
√
LC and IAmax and δ can be determined by

the initial conditions. Equation (66) can be written in terms of
ΦA or QA, since we know their relation together.

APPENDIX C: SOLVING RESONATOR’S HAMILTONIAN

In order to find the Hamiltonian of the resonator, we need
to use the Hamiltonian field theory. This starts by deriving the
field flux variable Φ from the density Hamiltonian in (45).

To find the equation of motion, from which we can find the
field flux by solving it, we first need the Hamiltonian field
equations which they are [45]:

ϕ̇ =
δHD

δπ
(67)

π̇ = −δHD

δϕ
(68)

Where ϕ is the field and π is the momentum density
conjugate to the field. Here δ

δf is the variational derivative
defined as:

δ

δf
=

∂

∂f
−∇ · ∂

∂(∇f)
(69)

Since we have only 1 spatial dimension, x-axis along the
length of the resonator, then the variational derivative is:

δ

δf
=

∂

∂f
− ∂

∂x

(
∂

∂(∂f∂x )

)
(70)

By using the second Hamiltonian equation (68), on the
Hamiltonian density HD:

π̇ =
∂HD

∂Φ
− ∂

∂x

(
∂HD

∂(∂Φ∂x )

)
We have:

co
∂2Φ

∂t2
= − ∂

∂Φ

(
co
2

(
∂Φ

∂t

)2

+
1

2lo

(
∂Φ

∂x

)2
)

+
∂

∂x

(
1

lo

∂Φ

∂x

)
Then:

co
∂2Φ

∂t2
= −

(
co
2

∂2Φ

∂t2
+

1

2lo

∂2Φ

∂x2

)
+

1

lo

∂2Φ

∂x2

After simplification, we got the equation of motion:

∂2Φ

∂t2
= v2o

∂2Φ

∂x2
(71)

This is the wave equation, where v2o = 1/colo. The solution
of the wave equation by using separation of variable method13

for one mode:

Φ(x, t) =
∞∑

m=0

um(x)Φm(t) (72)

Substituting into wave equation (71):

∂2

∂t2
(um(x)Φm(t)) = vo

2 ∂
2

∂x2
(um(x)Φm(t))

Then,

1

Φm

d2Φm

dt2
= vo

2 1

um

d2um
dx2

= −ω2
m

The first equality (temporal part) is Φ̈m = −ω2
mΦm, and it

is arbitrary (i.e. not necessarily a sinusoidal). That is because
we do not have boundary conditions on time. The second
equality (spatial part) is:

d2um
dx2

= −k2mum (73)

where km = ωm/vo. Hence the solution of the spatial part
is:

um(x) = Am cos(kmx+ δm) (74)

The boundary conditions (for λ/2 coplanar waveguide res-
onator) are:

I(x = 0, d) = − 1

lo

∂Φ

∂x

∣∣∣∣
x=0,d

= 0 (75)

Applying the boundary conditions on the spatial part, which
is (74). With simple substitution, we get δm = 0 and km =
mπ
d . Then, the solution of the spatial part of the wave equation

is:
um(x) = Am cos(

mπ

d
x) (76)

Then summing over all modes, the general solution is:

Φ(x, t) =
∞∑

m=0

um(x)Φm(t)

=
∞∑

m=0

Am cos(
mπ

d
x)Φm(t)

(77)

Exploiting the orthogonality of the different modes, we have
the normalization rules14 for the spatial solution:

1

d

∫ d

0

umum′ dx = δmm′ (78)

1

k2md

∫ d

0

∂um
∂x

∂um′

∂x
dx = δmm′ (79)

Substitute back in the Hamiltonian density (45), with:

∂Φ

∂t
=

∞∑
m=0

um(x)
∂Φm

∂t
(80)

13Notice that um(x) is a dimensionless function.
14These normalization rules keep the spatial part um(x) dimensionless.
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∂Φ

∂x
=

∞∑
m=0

∂um
∂x

Φm (81)

Thus:

H =

∫ d

0

[
co
2

∞∑
m=0

∞∑
m′=0

um(x)um′(x)
∂Φm

∂t

∂Φm′

∂t

+
1

2lo

∞∑
m=0

∞∑
m′=0

∂um
∂x

∂um′

∂x
ΦmΦm′

]
dx

(82)

By applying the normalization rules:

H =
cod

2

∞∑
m=0

(
∂Φm

∂t

)2

+
d

2lo

∞∑
m=0

k2mΦ2
m (83)

Simplifying the expression and taking a common factor:

H =
cod

2

∞∑
m=0

[(
∂Φm

∂t

)2

+ ω2
mΦ2

m

]
(84)

Substituting back with charge density Q′
m = co

∂Φm

∂t :

H =
cod

2

∞∑
m=0

[
1

c2o
Q′

m
2
+ ω2

mΦ2
m

]
(85)

The charge for mode m is Qm = Q′
md, substituting this

back, we get:

H =
∞∑

m=0

[
Q2

m

2Cr
+

1

2
Crω

2
mΦ2

m

]
(86)

Where Cr = cod is the total capacitance of the transmission
line resonator. And, finally, we have the classical Hamiltonian
of the transmission line resonator.
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